Tính: ( 1 + ) x ( 1 + ) x ( 1 + ) x…x ( 1 + ) x ( 1 +)
Tính nhanh P=1/x(x+1) + 1/(x+1)(x+2)+...+1/(x+5)(x+6)
Gợi ý : 1/x(x-1)=1/x - 1/x+1
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)
Chứng minh rằng 1/x - 1/(x+1) = 1/x(x+1)
Vận dụng để tính nhanh phép tính sau:
1/(x^2+x) + 1/(x^2+3x+2) + 1/(x^2+5x+6) + 1/(x^2+7x+12) + 1/(x^2+9x+20) + 1/(x+5)
Ta có : 1/x - 1/(x+1) = 1/x(x+1)
<=> pcm \(\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
<=> pcm \(\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
<=> pcm 1/x(x+1) = 1/x(x+1)
Đây là điều luôn đúng nên ta có điều phải chứng minh
Chú ý : Chữ pcm là phải chứng minh
Ta có : \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}\)
\(+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
Áp dụng chứng minh trên ta có :
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
=1/x
+)\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
+)\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
a) Thực hiện phép tính
( 1 - 1/2 ) x ( 1 - 1/3 ) x ( 1 - 1/4 ) x ( 1 - 1/5 ) x ... x ( 1 - 1/99 )
b) Tìm X biết
( X +1/2 ) + ( X +1/6 ) + ( X +1/12 ) + ( X +1/20 ) + ... + ( X +1/90 ) = 99/10
Tính:
a) (x-1)^3-(x+1)^3+6.((x+1).(x-1)
b) (x-1)^3-(x-1).(x^2+x+1)-3.(1-x).x
a. Câu hỏi của Nguyễn Thị Anh Thư - Toán lớp 8 - Học toán với OnlineMath
a, \(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(=-2\left[x^2-2x+1+x^2-1+x^2+2x+1\right]+6x^2-6\)
\(=-2\left(3x^2+1\right)+6x^2-6=-6x^2-2+6x^2-6=-8\)
b, \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2-\left(x^2+x+1\right)+3x\right]\)
\(=\left(x-1\right)\left(x^2-2x+1-x^2-x-1+3x\right)\)
\(=\left(x-1\right).0=0\)
a) F(x): 1+x^3+x^5+x^7......+x^99+x^101
tính x : tại x= -1,x=1
b) F(x): 1+x^2+x^4+x^6......+x^98+x^100
tính x : tại x= -1
Tính nhanh: 1/3+1/6+1/10+...+1/ x x (x+1): 2= 2009/2011(1/ x x (x+1): 2 đọc là 1 trên x nhân (x +1) : 2.
Tính nhanh: 1/3+1/6+1/10+...+1/ x x (x+1): 2= 2009/2011(1/ x x (x+1): 2 đọc là 1 trên x nhân (x +1) : 2.
Giải phương trình: A=( \(\dfrac{x+1}{x-1}\)+ \(\dfrac{4}{x-1}\)-\(\dfrac{x-1}{x+1}\)) : \(\dfrac{x^2-4x+4}{x^2+x}\)
b/ Tính giá trị của A nếu x=1/2
c/ tính gtnn của a
thực hiện phép tính:1/x.(x+1)+1/(x+1).(x+2)+1/(x+2).(x+3)+.....+1/(x+2019).(x+2020)