Bài 5: Cho hàm số y = 2x + 3 và điểm M(4; 2). Tìm điểm A thuộc đô thị hàm số sao cho độ dài của AM nhỏ nhất AI CHỈ MÌNH VS
Bài 5: Cho hàm số y = 2x + 3 và điểm M(4; 2). Tìm điểm A thuộc đô thị hàm số sao cho độ dài của AM nhỏ nhất cứu tui vs
AM nhỏ nhất khi MA là khoảng cách từ M xuống (d)
y=2x+3
=>2x-y+3=0
Gọi (d') là đường thẳng đi qua M và vuông góc (d)
=>MA nhỏ nhất là khi A là giao của (d) với (d')
(d') vuông góc (d)
=>(d'): y=-1/2x+b
Thay x=4 và y=2 vào (d'), ta được:
b-1/2*4=2
=>b-2=2
=>b=4
=>(d'): y=-1/2x+4
Tọa độ A là;
-1/2x+4=2x+3 và y=2x+3
=>-5/2x=-1 và y=2x+3
=>x=2/5 và y=4/5+3=19/5
bài 1: tìm giá trị của m để đồ thị của hàm số y = x+ (2+m) và y= 2x+(3-m) cắt nhau tại một điểm trên trục tung? tìm tọa độ giao điểm
bài 2: tìm giá trị của m để đồ thị của các hàm số y =x + (2+m) và y=2x+( 3-m) cắt nhau tại điểm có tung đọ bàng 5?
1.
để ............. căt nhau tại 1 điểm trên trục tung thì:
\(\hept{\begin{cases}0\ne2\left(T.m\right)\\2+m=3-m\end{cases}}\)
<=>2m=1
<=>m=1/2
Bài 1: Tìm m để a/ Hàm số y = (- m + 4) x + 5 là hàm số bậc nhất b/ Hàm số y = (2 - m) x - 3 đồng biến trong R Bài 2: Cho hàm số y = 2x có đồ thị (d1); hàm số y=x-1 có đồ thị (d2) . a / Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ. b/ Xác định tọa độ giao điểm A của (d1) và (d2) bằng phép toán. c/ Viết ph / trình đường thẳng (D) song song với (d2) và điểm M(6;3) qua
b: Để hàm số đồng biến thì 2-m>0
hay m<2
Bài 1: Tìm m để a/ Hàm số y = (- m + 4) x + 5 là hàm số bậc nhất b/ Hàm số y = (2 - m) x - 3 đồng biến trong R Bài 2: Cho hàm số y = 2x có đồ thị (d1); hàm số y=x-1 có đồ thị (d2) . a / Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ. b/ Xác định tọa độ giao điểm A của (d1) và (d2) bằng phép toán. c/ Viết ph / trình đường thẳng (D) song song với (d2) và điểm M(6;3) qua
b: Để hàm số đồng biến thì 2-m>0
hay m<2
Bài 1 :
1, Viết phương trình đường thẳng đi qua hai điểm (1;2) và (-1;-4)
2, Tìm tọa độ giao điểm của đường thẳng trên truc tung và trục hoành
Bài 2 : Cho hàm số y=(m-2)x+m+3
1, Tìm điều kiện của m để hàm số luôn nghịch biến
2, Tìm m để đồ thị hàm số cắt trục tung tại điểm có hoành độ bằng 3
3, Tìm m để đồ thị hàm số trên và các đồ thị của các hàm số y=-x+2 ; y=2x-1 đồng quy
Cho hàm số \(y=x^2+2mx-3m\) và hàm số \(y=-2x+3\). Tìm m để hai đồ thị đã cho cắt nhau tại hai điểm phân biệt A và B sao cho AB = \(4\sqrt{5}\)
Phương trình hoành độ giao điểm:
\(x^2+2mx-3m=-2x+3\)
\(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\)
Hai đồ thị cắt nhau tại hai điểm phân biệt A, B khi phương trình \(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\) có hai nghiệm phân biệt
\(\Leftrightarrow\Delta'=m^2+5m+4>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -4\end{matrix}\right.\)
Phương trình có hai nghiệm phân biệt \(x=-m-1\pm\sqrt{m^2+5m+4}\)
\(x=-m-1+\sqrt{m^2+5m+4}\Rightarrow y=2m+5-2\sqrt{m^2+5m+4}\)
\(\Rightarrow A\left(-m-1+\sqrt{m^2+5m+4};2m+5-2\sqrt{m^2+5m+4}\right)\)
\(x=-m-1-\sqrt{m^2+5m+4}\Rightarrow y=2m+5+2\sqrt{m^2+5m+4}\)
\(\Rightarrow B\left(-m-1-\sqrt{m^2+5m+4};2m+5+2\sqrt{m^2+5m+4}\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-2\sqrt{m^2+5m+4};4\sqrt{m^2+5m+4}\right)\)
\(\Rightarrow AB=\sqrt{4\left(m^2+5m+4\right)+16\left(m^2+5m+4\right)}=2\sqrt{5\left(m^2+5m+4\right)}=4\sqrt{5}\)
\(\Leftrightarrow\sqrt{m^2+5m+4}=2\)
\(\Leftrightarrow m^2+5m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-5\left(tm\right)\end{matrix}\right.\)
Xét phương trình hoành độ giao điểm của (d): y = -2x + 3 và
(P) : x2 + 2mx - 3m = 0
x2 + 2mx - 3m = -2x + 3
⇔ x2 + 2(m+1) - 3(m+1) = 0 (*)
Để (d) cắt (P) taị 2 điểm phân biệt thì (*) có hai nghiệm phân biệt. Khi đó Δ' > 0
⇔ (m+1)2 + 3(m+1) > 0
⇔ (m+1)(m+4) > 0
⇔ m ∈ R \ (-4 ; -1) (!)
Do A,B là giao điểm của (d) và (P) nên hoành độ của chúng là nghiệm của (*)
Theo định lí Viet : \(\left\{{}\begin{matrix}x_A+x_B=-2m-2=-2\left(m+1\right)\\x_A.x_B=-3m-3=-3\left(m+1\right)\end{matrix}\right.\)
Do A,B ∈ d nên hoành độ và tung độ của chúng thỏa mãn
y = -2x + 3 hay \(\left\{{}\begin{matrix}y_A=-2x_A+3\\y_B=-2x_B+3\end{matrix}\right.\)
Để giải được bài này thì mình sẽ sử dụng công thức tính độ dài của vecto AB (nếu bạn chưa học đến thì xin lỗi)
AB = |\(\overrightarrow{AB}\)| = 4\(\sqrt{5}\)
⇒ (xA - xB)2 + (yA - yB)2 = 80
⇒ (xA - xB)2 + (-2xA + 2xB)2 = 80
Sau đó bạn thay m vào rồi biến đổi, kết quả ta được
(m+1)(m+4) = 4 \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)(thỏa mãn (!) )
Vậy tập hợp các giá trị của m thỏa mãn yêu cầu bài toán là
M = {0 ; -5}
Bài 1: a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017
b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3
Bài 2: Cho đường thẳng (d): y = 4x
viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10
Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)
Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1
a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2
b) Vẽ đồ thị 2 hàm số trên khi m = 2
c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung
Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)
Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5
a) Tìm m để 3 đường thẳng đã cho đồng quy
b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi
Bài 1: Tìm m để đường thẳng y= 2x-1-3m và y= 3x+m cắt nhau tại 1 điểm trên trục hoành.
Bài 2: Cho hàm số y= mx+m-2. Tìm m biết rằng đồ thị hàm số đã cho cắt đường thẳng y= 2x+1 tại một điểm có tung độ bằng 3.
Bài 1 : cho 2 hàm số bâc nhất y=mx+3 và y= (2m+1)x-5
Tìm giá tri của m để đồ thi của 2 hàm số đã cho là 2 đường thẳng song song
Bài 3 : cho hs bâc nhất y=ax-4. tìm hê số a biết đths cắt đường thẳng y=2x-1 tai điểm có hoành đô bằng 2
giúp mk nha mn
1/ta có: y = mx + 3 và y = (2m + 1)x - 5 là hai hs bậc nhất nên:
\(\hept{\begin{cases}m\ne0\\2m+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-\frac{1}{2}\end{cases}}}\)
Đồ thị của hai hs đã cho là 2 đường thẳng song song vs nhau khi và chỉ khi:
\(\hept{\begin{cases}m=2m+1\\3\ne-5\left(HiểnNhien\right)\end{cases}}\)
\(\Leftrightarrow m=-1\)(thỏa mãn)
kết hợp vs điều kiện, ta có m = -1 ; \(m\ne-\frac{1}{2}\); \(m\ne0\)thì đồ thị 2 hs là 2 đường thằng song song