Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Thu
Xem chi tiết
linh Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 15:03

a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)

\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)

d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Krissy
Xem chi tiết
Cường Ngô
19 tháng 10 2019 lúc 18:37

Đưa một tỉ tao làm cho 

Khách vãng lai đã xóa
Cao Thúy Nga
Xem chi tiết
Nguyễn Tùng Lâm
Xem chi tiết
Trần Bình Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2020 lúc 22:57

Ta có: \(C=10x^2+4x-12xy+5y^2+6y+19\)

\(=\left(y^2+6y+9\right)+\left(4y^2-12xy+9x^2\right)+\left(x^2+4x+4\right)+6\)

\(=\left(y+3\right)^2+\left(2y-3x\right)^2+\left(x+2\right)^2+6\ge6\forall x,y\)

Dấu '=' xảy ra khi:

\(\left\{{}\begin{matrix}y+3=0\\2y-3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=-2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(C=10x^2+4x-12xy+5y^2+6y+19\) là 6 khi x=-2 và y=-3

Nguyễn Thị Mỹ Bình
Xem chi tiết
duc ke
Xem chi tiết
Kim Tae-hyung
Xem chi tiết
💥Hoàng Thị Diệu Thùy 💦
6 tháng 10 2019 lúc 8:28

a, \(x^2+y^2-2x+10y+26=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)

b,\(4x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

c,\(5x^2+9y^2-12xy+4x+4=0\)

\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)

\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)

d,\(5x^2+9y^2-6xy-4x+1=0\)

\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)