Tìm x : y biết :
100x = 10y
Tìm x,y,t thỏa mãn :
(y+t)^x=100x+10y
tìm số tự nhiên x,y,z biết 2(100x+10y+z)=3x!y!z!
x,y,z ϵZ và 100x+10y+z⋮21
CM: x-2y+4z⋮21
\(100x+10y+z⋮21\)
\(\Rightarrow21\left(5x+z\right)-\left(100x+10y+z\right)⋮21\)
\(\Rightarrow5x-10y+20z⋮21\)
\(\Rightarrow5\left(x-2y+4z\right)⋮21\)
Mà 5 và 21 là 2 số nguyên tố cùng nhau
\(\Rightarrow x-2y+4z⋮21\)
Với x,y,z thuộc Z..CMR:100x+10y+z chia hết cho 21 khi và chỉ khi x-2y+4z chia hết cho 21
Bài 1 CMR nếu x,y,z thuộc Z thỏa 100x+10y+z chia hết cho 21 thì x-2y+4z chia hết cho 21
bài 2 Tính M= 4x+4y+21xy*(x+y)+7x^2y^2*(x+y) +2014 với x+y =0
Bài 3 Cho hình tam giác ABC vuông tại B, đường cao BE. Tìm các góc nhọn của hình tam giác đó biết EC-EA=AB
cho x, y. z là các số nguyên. chứng minh rằng nếu 100x +10y +10z chia hết cho 21 thì x-2y+4z chia hết cho 21
Cho $x=1, y=6, z=5$ thì $100x+10y+10z=210\vdots 21$ nhưng $x-2y+4z=1-2.6+4.5=9$ không chia hết cho 21.
Do đó đề sai. Bạn xem lại nhé.
cho x ,y, z là các số nguyên .chứng minh nếu: 100x+10y+z chia hết cho 21 thì suy ra x-2y+4z chia hết cho 21
100x + 10y + z chia hết cho 21 nên cũng chia hết cho 3 và 7
ta có: x - 2y + 4z = (100x + 10y + z) - (99x + 12y -3z) mà 100x + 10y +z và 99x + 12y -3z đều chia hết cho 3 nên x - 2y + 4z chia hết cho 3
Có: 2.(x - 2y + 4z) = (100x + 10y + z) - (98x + 14y -7z) mà 100x + 10y +z và 98x+ 14y -7z đều chia hết cho 7 nên 2.(x - 2y + 4z) chia hết cho 7 mà 2 không chia hết cho 7 nên x - 2y + 4z chia hết cho 7
=> x - 2y + 4z đều chia hết cho 3 và 7 nên sẽ chia hết cho 21
Trần thị Loan cho mk hỏi bn lấy 2 đâu ra mà nhân
Shiho Miyano bn ăn nới lễ phép chút đi cô Loan là cô giáo đấy
Cho x,y,z là các số nguyên thỏa mãn : (100x + 10y + z) chia hết cho 21
CMR : (x - 2y + 4z) chia hết cho 21
Giải: Do (100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21(100x+10y+z)+5(x−2y+4z)=105x+21z=21(5x+z)⋮21
nên 100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21100x+10y+z⋮21⇔5(x−2y+4z)⋮21⇔x−2y+4z⋮21
Do đó cả chiều thuận và đảo đều thoả mãn.
Tìm x;y biết (100x+3y+1).(2^x+10x+y)=225