Cho hình lăng trụ ABC.A'B'C' có các đáy là các tam giác đều. Tính góc (AB, B'C').
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh 2a, biết thể tích của khối lăng trụ ABC.A'B'C' bằng a 3 . Tính khoảng cách h giữa hai đường thẳng AB và B'C'.
Cho hình lăng trụ tam giác A B C . A ' B ' C ' có đáy là tam giác đều cạnh a Cạnh bên tạo với đáy một góc 60 0 . Gọi M là trung điểm của B ' C ' và I là trung điểm của đoạn A ' M . Biết hình chiếu vuông góc của I trên mặt phẳng đáy A B C là trọng tâm cả tam giác A B C . Tính thể tích của khối lăng trụ A B C . A ' B ' C ' theo
A. a 3 3 4 .
B. a 3 3 48 .
C. a 3 3 16 .
D. a 3 3 12 .
Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, mặt bên ABB'A' là hình thoi A ' A C ^ = 60 ∘ ; B ' C = a 3 2 . Tính thể tích khối lăng trụ ABC.A'B'C'.
A. a 3 3 4
B. 3 a 3 3 16
C. a 3 3 16
D. 3 a 3 3 4
Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, mặt bên ABB'A' là hình thoi A A ' C ⏜ = 60 0 ; B'C= a 3 2 .Tính thể tích khối lăng trụ ABC.A'B'C'.
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a√2 . Gọi I là trung điểm B'C góc giữa AI và đáy bằng 60. Tính thể tích V của khối lăng trụ ABC. A'B'C' .
Cho hình lăng trụ A B C . A ' B ' C ' có đáy ABC là tam giác đều cạnh 2a. biết thể tích của khối lăng trụ A B C . A ' B ' C ' bằng a 3 . Khoảng cách h giữa hai đường thẳng AB và B'C' bằng
A. 4 a 3
B. a 3
C. a
D. a 3
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB=a, A C B ⏜ , b'c tạo với mặt phẳng AA'B'C' một góc 30 0 . Tính thể tích V của khối lăng trụ ABC.A'B'C'.
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(AB\) (Hình 100).
a) Tính góc giữa hai đường thẳng \(AB\) và \(B'C'\).
b) Tính góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {ABC} \right)\).
c) Tính số đo của góc nhị diện \(\left[ {B,CC',M} \right]\).
d) Chứng minh rằng \(CC'\parallel \left( {ABB'A'} \right)\). Tính khoảng cách giữa đường thẳng \(CC'\) và mặt phẳng \(\left( {ABB'A'} \right)\).
e) Chứng minh rằng \(CM \bot \left( {ABB'A'} \right)\). Tính khoảng cách giữa hai đường thẳng \(CC'\) và \(A'M\).
g) Tính thể tích của khối lăng trụ tam giác đều \(ABC.A'B'C'\) và thể tích khối chóp \(A'.MBC\).
a) \(BCC'B'\) là hình chữ nhật \( \Rightarrow BC\parallel B'C'\)
\( \Rightarrow \left( {AB,B'C'} \right) = \left( {AB,BC} \right) = \widehat {ABC} = {60^ \circ }\).
b)
\(\Delta AA'B\) vuông tại \(A \Rightarrow \tan \widehat {ABA'} = \frac{{AA'}}{{AB}} = \frac{a}{a} = 1 \Rightarrow \widehat {ABA'} = {45^ \circ }\)
Vậy \(\left( {A'B,\left( {ABC} \right)} \right) = {45^ \circ }\).
c) \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot BC,CC' \bot CM\)
Vậy \(\widehat {BCM}\) là góc nhị diện \(\left[ {B,CC',M} \right]\).
\(\Delta ABC\) đều \( \Rightarrow \widehat {BCM} = \frac{1}{2}\widehat {ACB} = {30^ \circ }\).
d) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)
\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).
\( \Rightarrow CM \bot \left( {ABB'A'} \right)\)
\(\Delta ABC\) đều \( \Rightarrow CM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\).
\(\left. \begin{array}{l}CC'\parallel AA'\\AA' \subset \left( {ABB'A'} \right)\end{array} \right\} \Rightarrow CC'\parallel \left( {ABB'A'} \right)\)
\( \Rightarrow d\left( {CC',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CM = \frac{{a\sqrt 3 }}{2}\)
e) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)
\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).
\( \Rightarrow CM \bot \left( {ABB'A'} \right) \Rightarrow CM \bot A'M\)
\(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot CM\)
\( \Rightarrow d\left( {CC',A'M} \right) = CM = \frac{{a\sqrt 3 }}{2}\)
g) \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4},h = AA' = a\)
\( \Rightarrow {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^2}\sqrt 3 }}{4}.a = \frac{{{a^3}\sqrt 3 }}{4}\)
\({S_{\Delta MBC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{8},h = AA' = a\)
\( \Rightarrow {V_{A'.MBC}} = \frac{1}{3}{S_{\Delta MBC}}.AA' = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{8}.a = \frac{{{a^3}\sqrt 3 }}{{24}}\)
Cho hình lăng trụ A B C . A ' B ' C ' có đáy là tam giác vuông cân tại A , A B = a . Biết thể tích của khối lăng trụ A B C . A ' B ' C ' là V = 4 a 3 3 . Tính khoảng cách giữa hai đường thẳng AB và B ' C '
A. h = 8 a 3
B. h = 3 a 8
C. h = 2 a 3
D. h = a 3
Đáp án A
Diện tích tam giác ABC là S A B C = 1 2 A B 2 = a 2 2
Chiều cao của khối lăng trụ là V A B C . A ' B ' C ' = S A B C × h ⇒ h = 8 a 3
Ta có B C / / B ' C ' ⇒ d A B ; B ' C ' = d B ' C ' ; A B C = d B ' ; A B C = h = 8 a 3