tìm x để giá trị phân thức sau bằng 0
a. \(\frac{18x^2-2}{x-5}\)
b. \(\frac{3x-12}{x^2-2x+4}\)
tìm x để giá trị phân thức sau bằng 0
\(\frac{3x-12}{x^2-2x+4}\)
Vì \(0< x^2-2x+4\)
Nên để GT trên bằng 0 thì
\(3x-12=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Ta có : \(\frac{3x-12}{x^2-2x+4}=0\)
\(\Rightarrow3x-12=0\)
\(\Rightarrow3x=12\)
\(\Rightarrow x=4\)
Câu 1 cho phân thức\(\frac{3x^2+6x+12}{x^3-8}\)
a) tìm điều kiện xá định của phân thức trên
b)tìm giá trị của phân thức tại x=\(\frac{4001}{2000}\)
c) tìm các giá trị nguyên của x để phân thức trên đạt giá trị nguyên.
câu 2giải pt
a)\(8\left(3x-2\right)-14x=2\left(4-7x\right)+15x\)
b)\(\frac{x-4}{3}-\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)
c)\(\left(2x+7\right)\left(x-5\right)=0\)
d)\(x^2-4+\left(x-2\right)\left(3x-2\right)=0\)
các bạn giúp mình với nhé
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
c) Để phân thức trên có giá trị nguyên thì :
\(3⋮x-2\)
=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)
=>\(x\in\left\{1,3,-1,5\right\}\)
zậy ....
câu 2)
a) \(8\left(3x-2\right)-14x=2\left(4-7x\right)+15x\)
=>\(24x-16-14x=8-14x+15x\)
=>\(24x-14x+14x-15x=8+16\)
=>\(9x=24=>x=\frac{24}{9}=\frac{8}{3}\)
Bài 1: Tìm giá trị của x để phân thức \(\frac{2x+2}{x^2-1}\)nhận giá trị bằng 0
Bài 2:Tìm x để giá trị của phân thức \(\frac{2x+3}{-x+5}\)bằng \(\frac{3}{4}\)
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
Bài 1 : Tìm giá trị của x để các biểu thức sau bằng 0
a, \(A=\frac{3x^2+5x-2}{3x^2-7x+2}\)
b,\(B=\frac{2x^2+10x+12}{x^3-4x}\)
c,\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}\)
a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)
\(ĐK:3x^2-7x+2\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)
=> 3x2 + 5x + 2 =0
<=> 3x2 + 3x + 2x +2 = 0
<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0
<=> ( x + 1 )(3x + 2 ) =0
<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = -2/3
b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)
<=> 2x2+ 10x + 12 = 0
<=> x2 + 5x+ 6 =0
<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\)
Vậy x = -3
c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)
<=> x3 + x2 -x -1 =0
<=> ( x - 1 )(x2 + 2x + 1 )
<=> ( x-1 ) (x+1)2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = { 1 ; -1 }
a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)
<=> 3x^2 + 5x - 2 = 0
<=> (3x - 1)(x + 2) = 0
<=> 3x - 1 = 0 hoặc x + 2 = 0
<=> 3x = 1 hoặc x = -2
<=> x = 1/3 (ktm) hoặc x = -2 (tm)
=> x = -2
b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)
<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)
<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)
<=> 2(x + 3) = 0
<=> x + 3 = 0
<=> x = -3
c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)
<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)
<=> (x + 1)(x - 1) = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
Cho phân thức A=\(\frac{3x^3+6x^2}{x^3+2x^2+x+2}\)
a)Tìm điều kiện của x để giá trị của phân thức được xác định
b)Tìm giá trị của x để phân thức có giá trị bằng 2
a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0
=> x^2(x+2)+(x+2) Khác 0
=> (x^2+1)(x+2) khác 0
=> x^2 khác -1(vô lý) và x khác -2
Vậy x khác -2 thì biểu thức A được xác định
b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)
Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)
\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
1. với giá trị nào của x thì đa thức dư trong mỗi phép chia sau có
giá trị bằng 0
a) (2x^4-3x^3+4x^2+1) : (x^2-1)
b) (x^5+2x^4+3x^4+x-3): (x^2+1)
a: \(=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)
Để số dư là 0 thì -3x+7=0
hay x=7/3
b: \(=\dfrac{x^5+x^3+2x^4+2x^2+2x^3+2x-2x^2-2-x-1}{x^2+1}\)
\(=x^3+2x^2+2x-2+\dfrac{-x-1}{x^2+1}\)
Để số dư là 0 thì -x-1=0
hay x=-1
Tìm các giá trị x nguyên để các phân thức sau có giá trị nguyên:
a) \(\frac{5}{2x+1}\)
b) \(\frac{x^3-3x^2+5}{x+2}\)
c) \(\frac{x^3-x^2+2}{x-2}\)
a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng:
2x + 1 | -5 | -1 | 1 | 5 |
x | -3 | -1 | 0 | 2 |
Do vậy \(x=\left\{-3;-1;0;2\right\}\)
b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)
\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)
\(=x^2-5x+10+\frac{15}{x+2}\)
Để A nguyên
=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)
=> 15 chia hết cho x + 2
=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
...
bn tự xét nha
c) Đặt \(A=\frac{x^3-x^2+2}{x-2}=\frac{x^3-2x^2+x^2-2x+2x-4+6}{x-2}\)
\(=\frac{x^2.\left(x-2\right)+x.\left(x-2\right)+2.\left(x-2\right)+6}{x-2}=\frac{\left(x-2\right).\left(x^2+x+2\right)+6}{x-2}\)
\(=x^2+x+2+\frac{6}{x-2}\)
...
Cho phân thức \(M=\left[\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x+1}\right]:\frac{x^2+x}{x^3+x}\)
a) Tìm điều kiện để giá trị của biểu thức xác định
b) tìm giá trị của x để biểu thức bằng 0
c) Tìm x khi giá trị tuyệt đối của M=1