Cho hình bình hành ABCD (AB>AD). Tia phân giác của góc CAD cắt DC tại M, tia phân giác của góc ACB cắt AB tại N.
a) Chứng minh AN // CN
b) Tứ giác AMCN là hình gì?
c) Lấy các điểm E,F lần lượt trên cạnh BC, DA sao cho BE=DF. Chứng minh ME//FN
Cho hình bình hành ABCD . tia phân giác góc B cắt DC tại M , Tia phân giác Của góc D cắt AB tại N: a) chứng minh Tam giác ADN = tam giác CBM b) C/m tứ giác DMBN là hình bình hành c) C/m tức giác AMCN là hình bình hành
a: Xét ΔADN và ΔCBM có
góc A=góc C
AD=CB
góc ADN=góc CBM
=>ΔADN=ΔCBM
b: ΔADN=ΔCBM
=>AN=CM
AN+NB=AB
CM+MD=CD
mà AN=CM và AB=CD
nên NB=MD
mà NB//MD
nên NBMD là hình bình hành
c: Xét tứ giác AMCN có
AN//CM
AN=CM
=>AMCN là hình bình hành
Cho hình bình hành ABCD (AB > AD), phân giác góc A cắt cạnh CD tại M, phân giác góc C cắt cạnh AB tại N.
a) Chứng minh tứ giác AMCN là hình bình hành.
b) Gọi E là trung điểm AB, F là trung điểm CD, chứng minh rằng AC, MN, EF và BD đồng quy.
c) Đường chéo DB cắt AF, EC lần lượt tại I, K chứng minh DI = IK = KB.
Bài 1 : Cho hình bình hành ABCD ( AB > BC ) . Tia phân giác của góc D cắt AB ở E , tia phân giác của góc B cắt CD ở F . a ) Chứng minh DE // BF b ) Tứ giác DEBF là hình gì Bài 2 : Cho hình bình hành ABCD . gọi K , I lần lượt là trung điểm của các cạnh AB , CD . Gọi M , N lần lượt là giao điểm của AI , CK với đường chéo BD . Chứng minh AC , BD , IK đồng quy tại một điểm
Bài 2:
AK=AB/2
CI=CD/2
mà AB=CD
nên AK=CI
Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
=>AC cắt KI tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,KI,BD đồng quy
Bài 1:
a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)
\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)
mà \(\widehat{ADC}=\widehat{ABC}\)
nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)
Xét ΔEAD và ΔFCB có
\(\widehat{A}=\widehat{C}\)
AD=CB
\(\widehat{EDA}=\widehat{FBC}\)
Do đó: ΔEAD=ΔFCB
=>\(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{EDF}=\widehat{CFB}\)
mà hai góc này đồng vị
nên DE//BF
b: Xét tứ giác DEBF có
DE//BF
BE//DF
Do đó: DEBF là hình bình hành
Cho hình bình hành ABCD (AB>AD) có tia phân giác góc D cắt tia phân giác góc A, tia phân giác góc C và AB lần lượt tại M, N, I. Tia phân giác góc B cắt CN, AM tại P và Q. Chứng minh rằng:
1. Tứ giác MNPQ là hình chữ nhật.
2. Tam giác AMI = Tam giác BCP.
3. MP = AB - AD.
Cho hình bình hành \(ABCD\) (\(AB > BC\)). Tia phân giác của góc \(D\) cắt \(AB\) tại \(E\), tia phân giác của góc \(B\) cắt \(CD\) tại \(F\)
a) Chứng minh \(DE\) // \(BF\)
b) Tứ giác \(DEBF\) là hình gì?
a) Vì \(DE\), \(BF\) là phân giác (gt)
Suy ra \(\widehat {{\rm{ADE}}} = \widehat {{\rm{EDC}}} = \frac{{\widehat {ADC}}}{2}\); \(\widehat {{\rm{EBF}}} = \widehat {{\rm{CBF}}} = \frac{{\widehat {ABC}}}{2}\) (1)
Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(AB\) // \(CD\) và \(\widehat {ADC} = \widehat {ABC}\) (2)
Suy ra \(\widehat {{\rm{AED}}} = \widehat {{\rm{EDC}}}\) (so le trong) (3)
Từ (1), (2), (3) suy ra \(\widehat {AED} = \widehat {ABF}\)
Mà hai góc ở vị trí đồng vị
Suy ra \(DE\) // \(BF\)
b) Xét tứ giác \(DEBF\) ta có:
\(DE\) // \(BF\) (cmt)
\(BE\) // \(DF\) (do \(AB\) // \(CD\))
Suy ra \(DEBF\) là hình bình hành
1.Cho hình bình hành ABCD có AB=2BC. Gọi M là trung điểm của CD. Cmr:
a)AM,BM lần lượt là phân giác của góc A,góc B của hình bình hành ABCD
b)Tính góc AMB?
2. Cho hình bình hành ABCD. Tia phân giác của góc A cắt CD ở M. Tia phân giác góc C cắt AB ở N
a)Tứ giác AMCN là hình gì?Vì sao?
b) Cmr : BM=DN
Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?
Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :
a) MENF là hình bình hành.
b) Các đường thẳng AC, BD, MN, EF đồng quy.
Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.
Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.
a) Tứ giác DEBF là hình gì? Vì sao?
b) C/m 3 đường thẳng AC, BD, EF đồng qui.
c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.
Bài 6 : Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Bài 7: Cho hình thang ABCD ( AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.
Cho hình bình hành ABCD. Các tia phân giác của góc A và góc C cắt CD và AB lần lượt ở M và N. Chứng minh:
a) Tứ giác AMCN là hình bình hành
b) BM=DN
Cho hình bình hành ABCD có phân giác góc D,góc B lần lượt cắt AB,DC tại E,F . C/m AD=AE , tứ giác EBFD là hình bình hành
Ta có: \(\widehat{DEA}=\widehat{EDC}\)(hai góc so le trong, AE//DC)
mà \(\widehat{EDC}=\widehat{ADE}\)(DE là tia phân giác của \(\widehat{ADC}\))
nên \(\widehat{ADE}=\widehat{AED}\)
Xét ΔAED có \(\widehat{ADE}=\widehat{AED}\)(cmt)
nên ΔAED cân tại A(Định lí đảo của tam giác cân)
Suy ra: AD=AE(đpcm)