(a+b)(a-b)=2012n+2023(n là số tự nhiên)
tính giá trị lớn nhất của :
a) A = 2023 - 2020 :x với x là số tự nhiên
b) B = 2023 - 1003 : (1004 - x ) với x là số tự nhiên
a, A = 2023 - \(\dfrac{2020}{x}\) ( \(x\in\) N)
Đk: \(x\) # 0
⇒ \(x\in\) N*
vì \(x\in\) N* nên \(\dfrac{2020}{x}>0\) vậy Amax ⇔\(\dfrac{2020}{x}\) đạt giá trị nhỏ nhất.
\(\dfrac{2020}{x}\) đạt giá trị nhỏ nhất ⇔ \(x\)max mà \(x\) là số tự nhiên nên không có số tự nhiên lớn nhất
Vậy không có giá trị lớn nhất của A
b, B = 2023 - 1003: (1004 - \(x\)) Với \(x\) là số tự nhiên; đk \(x\) # 1004
B = 2023 + \(\dfrac{1003}{x-1004}\)
Nếu \(x\) < 1004 ⇒ \(x\) - 1004 < 0 ⇒ \(\dfrac{1003}{x-1004}\) < 0
⇒ \(\dfrac{1003}{x-1004}\) + 2023 < 2023 (1)
Nếu \(x\) > 1004 ⇒ \(x-1004\) > 0
Vậy B max ⇔ \(\dfrac{1003}{x-1004}\) đạt giá trị lớn nhất
\(\dfrac{1003}{x-1004}\) đạt giá trị lớn nhất ⇔ \(x-1004\) đạt giá trị nhỏ nhất.
Vì \(x\) > 1004 và \(x\) là số tự nhiên nên \(x\) nhỏ nhất khi \(x\) = 1005
⇒ Bmax = 2023 + \(\dfrac{1003}{1005-1004}\) = 3026 xảy ra khi \(x\) = 1005 (2)
Kết luận:
Kết hợp (1) và (2) ta có Giá trị lớn nhất của biểu thức B là 3026 xảy ra khi \(x=1005\)
Cho A= 1 +2^2+2^4+2^6+...+2^2023 và B =2^2023. Chứng minh 3 nhân A và 2 nhân B là hai số tự nhiên liên tiếp. (Lưu ý: ^ là số mũ)
Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)
\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)
=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)
=>\(3A=2^{2024}-1\)
mà \(2\cdot B=2^{2024}\)
nên 3A và 2B là hai số tự nhiên liên tiếp
Cho ,a b là các số tự nhiên. Chứng minh rằng nếu 7 a+2b và 31a+ 9b cùng chia hết cho 2023 thì a và b cùng chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
Do đó: 9(7a+2b)-2(31a+9b) chia hết cho 2023
=>63a+18b-62a-18b chia hết cho 2023
=>a chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
=>31(7a+2b)-7(31a+9b) chia hết cho 2023
=>-b chia hết cho 2023
=>b chia hết cho 2023
Cho ,a b là các số tự nhiên. Chứng minh rằng nếu 7 a+2b và 31a+ 9b cùng chia hết cho 2023 thì a và b cùng chia hết cho 2023.
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
Do đó: 9(7a+2b)-2(31a+9b) chia hết cho 2023
=>63a+18b-62a-18b chia hết cho 2023
=>a chia hết cho 2023
7a+2b chia hết cho 2023
31a+9b chia hết cho 2023
=>31(7a+2b)-7(31a+9b) chia hết cho 2023
=>-b chia hết cho 2023
=>b chia hết cho 2023
chứng minh rằng không tồn tại n là số tự nhiên thỏa mãn 2014^2014+1 chia hết cho n^2+2012n
A = 2^0 + 2^1 + 2^3 +...+
2^2022.B= 2^2023 .Hãy chứng tỏ A và B là hai số tự nhiên liên tiếp.
^ là mũ
\(A=1+2+2^2+2^3+...+2^{2022}\)
\(2A=2+2^2+2^3+...+2^{2023}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)
\(A=2^{2023}-1\)
Mà: \(2^{2023}-1\) và \(2^{2023}\)
Là hai số tự nhiên liên tiếp nên:
A và B là hai số tự nhiện liên tiếp
a,Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có:
1²+2²+3²+...+n²=n.(n+1).(2n+1)/6
b,Chứng minh rằng
A=1.5+2.6+3.7+...+2023.2027
chia hết các số 11;23 và 2023
c,Tìm tất cả các số tự nhiên n (1 ≤ n ≤ 2000) để biểu thức B=1.3+2.3+...+n.(n+2) chia hết cho 2027
1
a) Tìm tất cả các số tự nhiên n để 1+2+2^ +... + 2^2n-1 là số nguyên tố. b) Chứng minh rằng tồn tại 2023 số tự nhiên liên tiếp mà tất cả các số đều là hợp số. Nêu nhận định tổng quát và chứng minh nhận định đó. Câu 2.
a) Chứng tỏ rằng S=1+3+3^2 +...+3^2022 không là số chính phương.
b) Tìm số chính phương n mà tổng các chữ số của n bằng 2024.