Cho D ABC vuông tại A, có AB = 21, góc C = 30 độ .Vẽ đường phân giác BD của D ABC.
Hãy tính: a) Góc B và độ dài đoạn thẳng AD. b) Diện tích của D BDC
Cho tam giác vuông ABC, góc A=90 độ, góc C=30 độ và đường phân giác BD( D thuộc cạnh AC) a, Tính tỉ số \(\dfrac{AD}{CD}\)
b, Cho biết độ dài AB=12,5cm, hãy tính chu vi và diện tích của tam giác ABC
*VẼ HÌNH NỮA Ạ*
a) Xét ΔABC vuông tại A có \(\widehat{C}=30^0\)(gt)
mà cạnh đối diện với \(\widehat{C}\)
nên \(\dfrac{AB}{BC}=\dfrac{1}{2}\)(Định lí)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{CD}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AD}{CD}=\dfrac{1}{2}\)
b) Ta có: \(BC=2\cdot AB\)(cmt)
nên \(BC=2\cdot12.5=25\left(cm\right)\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=25^2-12.5^2=468.75\)
hay \(AC=\dfrac{25\sqrt{3}}{2}cm\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{12\cdot\dfrac{25\sqrt{3}}{2}}{2}=\dfrac{150\sqrt{3}}{2}=75\sqrt{3}\left(cm^2\right)\)
Cho tam giác ABC vuông tại A có AB=6, B=30 độ. Phân giác của góc C cắt AB tại D. tính độ dài các đoạn thẳng AD và BD
Cho tam giác ABC vuông tại A, có AB = 3cm , Ac=4cm , đường phân giác AD . Đường vuông góc với DC tại D cắt AC ở E
a) Chứng minh rằng tm giác ABC và tam giác DEC đồng dạng
b) Tính độ dài đoạn thẳng BC,BD
c) Tính độ dài AD
d) Tính diện tích tam giác ABC và diện thích tứ giác ABDE
a, Xét tam giác ABC và tam giác DEC ta có
^BAC = ^EDC = 900
^C_ chung
Vậy tam giác ABC ~ tam giác DEC ( g.g )
b, tam giác ABC vuông tại A
Áp dụng định lí Py ta go cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC^2=9+16=25\Rightarrow BC=5\)cm
Vì AD là tia phân giác ^A nên \(\frac{AB}{AC}=\frac{BD}{DC}\)mà DC = BC - BD = 5 - BD
\(\Rightarrow\frac{3}{4}=\frac{BD}{5-BD}\Rightarrow15-3BD=4BD\)
\(\Rightarrow7BD=15\Rightarrow BD=\frac{15}{7}\)cm
c, Ta có : \(DC=BC-BD=5-\frac{15}{7}=\frac{20}{7}\)cm
Áp dụng định lí Py ta go cho tam giác vuông tại D ta được :
\(AD^2+DC^2=AC^2\Rightarrow AD^2=AC^2-DC^2=16-\frac{400}{49}\)
\(\Rightarrow AD^2=\frac{384}{49}\Rightarrow AD=\frac{8\sqrt{6}}{7}\)xem sai ở đâu hộ mình nhé, chứ nếu theo hệ thức lượng thì như này
*\(AD.BC=AB.AC\Rightarrow AD=\frac{12}{5}\)*
d, \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.3.4=6\)
Cho tam giác ABC vuông tại A, có AB=3cm, AC=4cm, đường phân giác AD .Đường vuông góc với DC cắt AC ở E
a/ C/m rằng tam giác ABC và tam giác DEC đồng dạng
b/ Tính độ dài các đoạn thẳng BC, BD
c/ Tính độ dài AD
d/ Tính diện tích tam giác ABC và diện tích tứ giác ABDE
Cho tam giác vuông ABC, góc A = 90 độ, góc C = 30 độ và đường phân giác BD (D thuộc cạnh AC).
a) Tính tỉ số \(\frac{AD}{CD}\)
b) Cho bt độ dài AB = 12,5cm, hãy tính chu vi và diện tích của tam giác ABC.
a) tg ABD vuong tai A có BD = 2AD (vi góc D=60; C=30)
mà CD=BD ( vì tg CDB cân tại C: có C = B = 30)
VẬY tỷ số AD/CD = BD/CD = 1/2
b) tg ABC = 1/2 TG ĐỀU mà AB=12,5 => BC= 12,5.2 = 25cm
AC = BC\(\sqrt{3}\)/2= 15CĂN3
S= 1/2 . AB.AC = 1/2 , 12,5 . 15căn3 = 93,75\(\sqrt{3}\)cm2
chu vi tg là; 15căn3 + 25+12,5
tôi đã hoàn thành nhiệm vụ, thưa ngài
Cho tam giác ABC vuông tại A Biết AB = 3 cm, BC = 5 cm
a, Giải tam giác vuông ABC (số đo góc làm tròn đến độ)
b, Từ B kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AC tại D. Tính độ dài các đoạn thẳng AD, BD
c, Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh hai tam giác BEF và BDC đồng dạng
Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a, CMR: Tam giác ABC đồng dạng tam giác DEC
b, Tính độ dài các đoạn thẳng BC, BD
c, Tính độ dài AD
d, Tính diện tích tam giác ABC và diện tích tứ giác ABDE
cho tam giác ABC vuông tại A với góc ABC < 30 độ . Vẽ BD là tia phân giác của góc ABC , D thuộc AC . Vẽ DH vuông góc với BC tại H .
a) C/m : AD= DH
b) Hai đường thẳng DH và AB cắt nhau tại E . C/m tam giác BEC cân .
c) Gọi K là trung điểm của đoạn thẳng CE. C/m B,D.K thẳng hàng
d) Hãy so sánh độ dài đoạn thẳng BD và CD
( vẽ hình giúp mik vs )
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: DA=DH
b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
Suy ra: DE=DC
hay ΔDEC cân tại D
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab