Tìm GTNN
D= x^2 + 5y^2 - 2xy +4y +3
Tìm GTNN của B = x^2+5y^2+4y-2x-2xy+2
Tìm GTNN:
a) B= x2 + 2y2 - 2xy - 4y + 5
b) C= 2x2 - 2xy + 5y2 +5
Timf GTNN
a)x2+5y2-2xy+4y+3
b)(x2-2x).(x2-2x+2)
a)đặt A=\(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
=\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
ta thấy GTNN của A =2 khi x=y=-1/2
Tìm GTNN của :
A=7x2 +4x
B=4x2 +y2 -4x+4y+5
C=x2 - 2xy + 9y2 + 2x - 5y + 1
Tìm GTLN của :
D= -6x2 -4x+3
tìm GTNN : D=x2+5y2+2xy-2y+2005
tìm GTNN : D=x2+5y2+2xy-2y+2005
\(D=x^2+5y^2+2xy-2y+2005\)
\(D=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+2004,75\)
\(D=\left(x+y\right)^2+\left(2y+\frac{1}{2}\right)^2+2004,75\)
Mà \(\left(x+y\right)^2\ge0\forall x;y\)
\(\left(2y+\frac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow D\ge2004,75\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y=0\\2y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{1}{4}\end{cases}}\)
Vậy \(D_{Min}=2004,75\Leftrightarrow\left(x;y\right)=\left(\frac{1}{4};-\frac{1}{4}\right)\)
tìm GTNN : D=x2+5y2+2xy-2y+2005
tim gia tri nho nhat D= x^2 + 5y^2 -2xy + 4y +3
\(D=x^2+5y^2-2xy+4y+3\)
\(=x^2-2xy+y^2+4y^2+4y+1+2\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{1}{2}\)
Vậy \(D_{min}=2\Leftrightarrow x=y=-\dfrac{1}{2}\)
Bài 1: Tìm các giá trị nhỏ nhất của các biểu thức
a)A=x^2 - 2x + 5
b)B= x^2 - x + 1
c)C=(x-1)(x+2)(x+3)(x+6)
d)D=x^2 + 5y^2 - 2xy + 4y + 3
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu '=' xảy ra khi x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) Ta có: \(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)