\(D=x^2+5y^2-2xy+4y+3\)
\(=x^2-2xy+y^2+4y^2+4y+1+2\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{1}{2}\)
Vậy \(D_{min}=2\Leftrightarrow x=y=-\dfrac{1}{2}\)