Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Hương Quỳnh
Xem chi tiết
Xem chi tiết
Ga
14 tháng 10 2021 lúc 12:21

Bạn tham khảo nhé :

Lời giải:

Vì số cần tìm là số nhỏ nhất có bốn chữ số chia hết cho 25 và 79 nên số cần tìm là bội chung nhỏ nhất có 4 chữ số của 25 và 79

Ta có: 25 = 52;               79 = 79

+) Không có thừa số nguyên tố chung và thừa số riêng là 5; 79.

+) Số mũ lớn nhất của 5 là 2, số mũ lớn nhất của 79 là 1

Khi đó BCNN(25, 79) = 52.79 = 1 975.

Vậy máy tính ra đời năm 1975

Khách vãng lai đã xóa
Lê Mạnh Hùng
14 tháng 10 2021 lúc 20:31

TL:

Lời giải:

Vì số cần tìm là số nhỏ nhất có bốn chữ số chia hết cho 25 và 79 nên số cần tìm là bội chung nhỏ nhất có 4 chữ số của 25 và 79

Ta có: 25 = 52;               79 = 79

+) Không có thừa số nguyên tố chung và thừa số riêng là 5; 79.

+) Số mũ lớn nhất của 5 là 2, số mũ lớn nhất của 79 là 1

Khi đó BCNN(25, 79) = 52.79 = 1 975.

Vậy máy tính ra đời năm 1975

^HT^

Khách vãng lai đã xóa

Vì số cần tìm là số nhỏ nhất có bốn chữ số chia hết cho 25 và 79 nên số cần tìm là bội chung nhỏ nhất có 4 chữ số của 25 và 79

Ta có: 25 = 5^2;               79 = 79

+) Không có thừa số nguyên tố chung và thừa số riêng là 5; 79.

+) Số mũ lớn nhất của 5 là 2, số mũ lớn nhất của 79 là 1

Khi đó BCNN(25, 79) = 5^2.79 = 1 975.

Vậy máy tính ra đời năm 1 975.

Khách vãng lai đã xóa
Shun chan
Xem chi tiết
Citii?
17 tháng 12 2023 lúc 15:59

Gọi năm mà laptop ra đời nhỏ nhất có thể là x(x ϵ N*), theo đề bài, ta có:

x - 1 ⋮ 42

x - 1 ⋮ 47

x nhỏ nhất

⇒ x - 1 = BCNN(42,47)

⇒ Ta có:

42 = 2.3.7

47 = 47

⇒ BCNN(42,47) = 2.3.7.47 = 1974

⇒ x - 1 = 1974

⇒ x = 1974 + 1

⇒ x = 1975

⇒ Vậy laptop ra đời vào năm 1975.

 

Duong Nguyen
Xem chi tiết
Ngô Gia Bảo
Xem chi tiết
Lê Thị Mỹ Hằng
30 tháng 3 2017 lúc 8:51

Xin lỗi nha mình học lớp 6 !

Phạm Ngọc Anh
Xem chi tiết
linh hà
12 tháng 7 2023 lúc 9:27

 

1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên... Đọc tiếp

1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.

2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.

3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).

4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.

5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên đầu ) mà chia hết cho 36.

linh hà
12 tháng 7 2023 lúc 9:29

34x5y chia hết cho 36 khi 34x5y chia hết cho 4 và 9 
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4 
khi đó y = 2 hoặc y = 6. 
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9 
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4 
ta có số 34452 chia hết cho 36. 
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9 
ta có số 34956 chia hết cho 36. 
Kết luận: có hai số chia hết cho 36 là 34452 và 34956

Trà My Phạm
Xem chi tiết
Asuka Kurashina
1 tháng 4 2017 lúc 20:36

Ta có : M = 5 + 5^2 + 5^3 + 5^4+....+5^101

         5M = 5.( 5 + 5^2 + 5^3 + 5^4 +...+ 5^101 )

         5M = 5^2 + 5^ 3 + 5^4 + 5^5+...+5^101 + 5^102

=> 5M - M = 5^102 - 5

         4M = 5^102 - 5

           M = ( 5^102 - 5 ) : 4

jaki natsumy
Xem chi tiết
Nguyễn Thị Hạnh Đan
10 tháng 11 2017 lúc 22:01

ôi! chết đề dài quá! nhác rồi. Tạm biệt

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
2 tháng 8 2023 lúc 8:11

\(\overline{abcd}⋮9\)  (d là số nguyên tố)

\(\Rightarrow d\in\left\{3;5;7\right\}\)

mà \(\overline{abcd}\) là số chính phương

\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)

\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)

mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)

\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)

\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)

Trần Đình Thiên
2 tháng 8 2023 lúc 7:46


 Số chính phương có bốn chữ số. Số chính phương có bốn chữ số có thể là 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.


- Nếu tổng các chữ số là 9, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 18, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 27, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 36, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 45, thì số abcd
chia hết cho 9.

 

Ví dụ: Giả sử ta tìm số tự nhiên có bốn chữ số abcd
, biết rằng nó là một số chính phương, số abcd
chia hết cho 9 và d là một số nguyên tố.

- Ta tìm số chính phương có bốn chữ số: 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.

- Ta kiểm tra số abcd
chia hết cho 9. Ví dụ, nếu ta chọn số 2025, tổng các chữ số là 2 + 0 + 2 + 5 = 9, nên số 2025 chia hết cho 9.

- Ta kiểm tra d có phải là số nguyên tố. Ví dụ, nếu ta chọn số 2025, d = 5 không chia hết cho bất kỳ số nguyên tố nào từ 2 đến căn bậc hai của 5, nên d = 5 là số nguyên tố.

- Kết hợp các kết quả từ các bước trên, ta có số tự nhiên thỏa mãn yêu cầu đề bài là 2025.

A = \(\overline{abcd}\) 

+ vì A là một số chính phương nên \(d\) = 0; 1; 4; 5;6; 9

+ Vì \(d\) là số nguyên  tố nên \(d\) = 5

+ Vì A là số chính phương mà số chính phương có tận cùng bằng 5 thì chữ số hàng chục là: 2 ⇒ c =2

+ Vì A ⋮ 9 ⇒ a + b + c + d \(⋮\) 9 

⇔ a + b + 2 + 5 ⋮ 9 ⇒ a + b = 2; 11

a + b  = 2⇒ (a; b) =(1; 1); (2; 0) ⇒ \(\overline{abcd}\) = 1125; 2025

a + b = 11 ⇒(a;b) =(2;9); (3;8); (4; 7); (5; 6); (6;5); (7;4); (8; 3); (9;2)

⇒ \(\overline{abcd}\) = 2925; 3825; 4725; 5625; 6525; 7425; 8325; 9225

 Vì 2025 = 452; 5625 = 752 vậy số thỏa mãn đề bài là: 2025 và 5625