rút gọn biếu thức: (x+1)^3+(x-1)^3+x^3-3x(x+1)(x-1)
Cho biếu thức P=4x3-(2-4x)(x2-3x+1)
a) Rút gọn biểu thức P
b) Tính giá trị của P tại x=\(\frac{-1}{2}\)
a)\(P=4x^3-\left(2-4x\right).\left(x^2-3x+1\right)\)
\(=4x^3-\left(2x^2-6x+1-4x^2+12x^2-4x\right)\)
\(=4x^3-2x^2+6x-1+4x^2-12x^2+4x\)
\(=4x^3-10x^2+10x-1\)
b) Thay \(x=\frac{-1}{2}\) vào biểu thức trên
Ta Có : \(4.\left(\frac{-1}{2}\right)^3-10.\left(\frac{-1}{2}\right)^2+10.\left(\frac{-1}{2}\right)-1\)
\(=\frac{-1}{2}-\frac{5}{2}-5-1\)
\(=-3-5-1\)
\(=-8-1=-9\)
rút gọn biểu thức (x+1)^3(x-1)+x^3-3x*(x+1)*(x-1)
(x +1)3(x-1)+x3-3x(x+1)(x-1)
=(x3+3x2+3x+1)(x-1)+x3-3x(x2-1)
=x4-x3+3x3-3x2+3x2-3x+x-1+x3-3x3+3x
=x4+x-1
rút gọn biểu thức
N = (3x ^ 2 - x + 3)/(x ^ 3 - 1) - (x - 1)/(x ^ 2 + x + 1) + 2/(1 - x)\(=\dfrac{3x^2-x+3-x^2+2x-1-2x^2-2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-1}{x^2+x+1}\)
rút gọn biểu thức: (x+1)3+(x-1)3+x3-3x(x+1)(x-1)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1-3x^3-3x\)
\(=-x^3+3x\)
rút gọn biểu thức
a)x(x-2)(x+2)+(x+3)(x^2-3x+9)
b)(3x+2)^2-18x(3x+2)+(x-1)^3-28x^3+3x(x-1)
Rút gọn biểu thức
(x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
\(\left(x-1\right)^3+3\left(x-1\right)^2\cdot x+3\left(x-1\right)\cdot x^2+x^3\)
\(=\left(x-1+x\right)^3\)
\(=\left(2x-1\right)^3\)
rút gọn các biểu thức sau : 3(5x-2)-|x-5|, b:|2x+3|+2x+7, c: 3x-1+|1-3x|, d:3(x-1)-2|x+3|
rút gọn biểu thức (3+x/3-x+2x/3+x -4x^2-3x-9/x^2-9):(2/3-x -x-1/3x-x^2)
(\(3+\dfrac{x}{3-x}+\dfrac{2x}{3+x}-\dfrac{4x^2-3x-9}{x^2-9}\) ):\(\left(\dfrac{2}{3-x}-\dfrac{x-1}{3x-x^2}\right)\)\(=\left(\dfrac{3x^2-27}{\left(x-3\right)\left(x+3\right)}+\dfrac{-x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{4x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\right)\)\(:\left(\dfrac{2x}{x\left(3-x\right)}-\dfrac{x-1}{x\left(3-x\right)}\right)\)
\(=\dfrac{3x^2-27-x^2-3x+2x^2-6x-4x^2+3x+9}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{-6x-18}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\) \(=\dfrac{-6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{x\left(3-x\right)}\)
\(=\dfrac{6}{3-x}.\dfrac{x\left(x-3\right)}{x+1}\) \(=\dfrac{6x}{x+1}\)
Bài 1. Tìm x, biết
a) (x+4)2-x2(x+12)=16
c) (x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1)=28
d) (x-2)3-(x+5)(x2-5x+25)-6x2=11
Bài 2. Rút gọn các biểu thức sau:
A = (x+1)3+(x-1)3
B = (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)