A = \(\dfrac{7}{10x11}\) + \(\dfrac{7}{11x12}\) + \(\dfrac{7}{12x13}\) +... + \(\dfrac{7}{69x70}\)
C=7/10x11+7/11x12+7/12x13+.................+7/69x70 =?
C=7/10x11+7/11x12+7/12x13+.................+7/69x70
C=1x7/10x11+1x7/11x12+...........+1x7/69x70
C=7(1/10x11+1/11x12+1/12x13+....+1/69x70)
C=7(1/10-1/11+1/11-1/12+1/12-1/13+.......+1/69-1/70)
C=7(1/10-1/70)
C=7(7/70-1/70)
C=7x6/70
C=3/5
Tính tổng
A=7/10x11+7/11x12+7/12x13+...+7/69x70
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7.\frac{3}{35}=\frac{3}{5}\)
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=1\left(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\right)\)
\(A=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
C=7/10x11+7/11x12+7/12x13+.................+7/69x70
C=1x7/10x11+1x7/11x12+...........+1x7/69x70
C=7(1/10x11+1/11x12+1/12x13+....+1/69x70)
C=7(1/10-1/11+1/11-1/12+1/12-1/13+.......+1/69-1/70)
C=7(1/10-1/70)
C=7(7/10-1/70)
C=7×6/70
C=3/5
Tính các tổng sau: A=7/10x11 + 7/11x12 + 7/12x13 +...+ 7/69x70
C=7/10x11+7/11x12+7/12x13+.................+7/69x70
C=1x7/10x11+1x7/11x12+...........+1x7/69x70
C=7(1/10x11+1/11x12+1/12x13+....+1/69x70)
C=7(1/10-1/11+1/11-1/12+1/12-1/13+.......+1/69-1/70)
C=7(1/10-1/70)
C=7(7/70-1/70)
C=7x6/70
C=3/5
tính(có thể tính nhanh)
a) F=1/18+1/54+1/108+.....+1/990
b) A= 7/10x11+7/11x12+7/12x13+......+7/69x70
a) \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(3F=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\)
\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)
\(3F=\frac{1}{3}-\frac{1}{33}\)
\(F=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}.\frac{1}{3}-\frac{1}{3}.\frac{1}{33}=\frac{1}{9}-\frac{1}{99}=\frac{11}{99}-\frac{1}{99}=\frac{10}{99}\)
b) \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(A=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\left(\frac{7}{70}-\frac{1}{70}\right)=7.\frac{6}{70}\)
\(A=\frac{7.6}{70}=\frac{1.6}{10}=\frac{1.3}{5}=\frac{3}{5}\)
a, \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(F=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}-\frac{10}{33}\)
\(F=\frac{10}{99}\)
a) \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(F=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}.\frac{10}{33}\)
\(F=\frac{10}{99}\)
b) \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(A=7.\frac{3}{35}\)
\(A=\frac{3}{5}\)
Giup mình giải bài toán nâng cao này với:
7/10x11 + 7/11x12 + 7/12x13 +...+ 7/69x70 =?
7/10x11+7/11x12+7/12x13+.................+7/69x70
=1x7/10x11+1x7/11x12+...........+1x7/69x70
=7(1/10x11+1/11x12+1/12x13+....+1/69x70)
=7(1/10‐1/11+1/11‐1/12+1/12‐1/13+.......+1/69‐1/70)
=7(1/10‐1/70)
=7(7/70‐1/70)
=7x6/70
=3/5
NHỚ TK MK NHA
\(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}=\)
\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{7-1}{70}=\frac{6}{10}=\frac{3}{5}\)
Đặt \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(A=7.\frac{3}{35}\)
\(A=\frac{3}{5}\)
Tính giá trị biểu thức sau theo cách hợp lí nhất:
\(\frac{7}{10x11}+\frac{7}{11x12}+\frac{7}{12x13}+...+\frac{7}{69x70}\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7.\frac{3}{35}\)
\(=\frac{3}{5}\)
= 7/10-7/11+7/11-7/12+7/12-7/13+...+7/69-7/70
=7/10-7/70
=42/70
k mk nha
\(\frac{7}{10x11}+\frac{7}{11x12}+\frac{7}{12x13}+...+\frac{7}{69x70}\)
\(=7x\left(\frac{1}{10x11}+\frac{1}{11x12}+\frac{1}{12x13}+...+\frac{1}{69x70}\right)\)
\(=7x\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7x\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7x\left(\frac{7}{70}-\frac{1}{70}\right)\)
\(=7x\frac{6}{70}\)
\(=\frac{3}{5}\)
bài 1)
a)(\(\dfrac{12}{42}\) - \(\dfrac{26}{91}\) ).(\(\dfrac{-4}{7}\) +\(\dfrac{-5}{9}\))
b) \(\dfrac{9}{13}\) . \(\dfrac{-12}{7}\) +\(\dfrac{9}{13}\) .\(\dfrac{29}{17}\)
c) \(\dfrac{4}{7}\) +\(\dfrac{6}{7}\) .\(\dfrac{1}{7}\) +\(\dfrac{1}{7}\) .\(\dfrac{8}{7}\)
d) (\(\dfrac{5}{7}\) + \(\dfrac{9}{7}\) ). \(\dfrac{7}{10}\) +(\(\dfrac{8}{7}\) + \(\dfrac{13}{7}\) ). \(\dfrac{7}{10}\)
a: =(2/7-2/7)(-4/7-5/9)=0
b:
Sửa đề: 9/13*(-12/17)+9/13*29/27
=9/13(-12/17+29/17)
=9/13*17/17=9/13
c: \(=\dfrac{1}{7}\left(4+\dfrac{6}{7}+\dfrac{8}{7}\right)=\dfrac{1}{7}\cdot6=\dfrac{6}{7}\)
d: =7/10(5/7+9/7+8/7+13/7)
=5*7/10=7/2
A= \(\dfrac{7}{3x6}\) + \(\dfrac{7}{6x9}\) + \(\dfrac{7}{9x12}\) + \(\dfrac{7}{12x15}\) + ... + \(\dfrac{7}{96x99}\)
A = \(\dfrac{7}{3\times6}\) + \(\dfrac{7}{6\times9}\) + \(\dfrac{7}{9\times12}\) + \(\dfrac{7}{12\times15}\)+ .....+\(\dfrac{7}{96\times99}\)
A = \(\dfrac{7}{3}\) x ( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+ \(\dfrac{3}{9\times12}\)+ \(\dfrac{3}{12\times15}\)+......+\(\dfrac{3}{96\times99}\))
A = \(\dfrac{7}{3}\) x ( \(\dfrac{1}{3}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{12}\)+ \(\dfrac{1}{12}\) - \(\dfrac{1}{15}\)+....+ \(\dfrac{1}{96}\) - \(\dfrac{1}{99}\))
A = \(\dfrac{7}{3}\) x ( \(\dfrac{1}{3}\)- \(\dfrac{1}{99}\))
A = \(\dfrac{224}{297}\)
1.Tính
\(a,5\text{x}\dfrac{7}{3}\) \(b,\dfrac{13}{4}:7\)
2.Tính
\(a,\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}\) \(b,\dfrac{9}{7}-\dfrac{5}{11}\text{x}\dfrac{11}{7}\) \(c,\dfrac{3}{5}\text{x}\dfrac{5}{7}\text{+}\dfrac{4}{7}\) \(d,\dfrac{7}{9}\text{x}\dfrac{2}{5}:\dfrac{3}{11}\) e,\(\dfrac{9}{7}+\dfrac{2}{3}-\dfrac{1}{4}\)
g,\(\dfrac{4}{9}:\dfrac{3}{5}\text{x}\dfrac{2}{11}\) h,\(\dfrac{7}{2}-\dfrac{3}{10}:\dfrac{2}{5}\)
\(a,5x\dfrac{7}{3}=\dfrac{5}{1}x\dfrac{7}{3}=\dfrac{35}{3};b,\dfrac{13}{4}:7=\dfrac{13}{4} :\dfrac{7}{1}=\dfrac{13}{4}x\dfrac{1}{7}=\dfrac{13}{28}\)
\(\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}=\dfrac{60}{140}+\dfrac{56}{140}+\dfrac{105}{140}=\dfrac{221}{140}\)
\(\dfrac{9}{7}-\dfrac{5}{11}x\dfrac{11}{7}=\dfrac{9}{7}-\dfrac{5}{7}=\dfrac{4}{7}\)