Chứng tỏ rằng : Nếu p ; p+2 và p+4 đều là các số
P3 +2 cũng là số nguyên tố
chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p^2-1 chia hết cho 3
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 2
=>p^2-1 chia hết cho 2 (2)
từ (1) và (2) => p^2-1 chia hết chia hết cho với mọi số nguyên tố p>3
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3
Vì p là số nguyên tố, p>3 nên p không chia hết cho 3
Vì p không chia hết cho 3 nên p có 1 trong 2 dạng: 3k+1, 3k+2(k thuộc N*)
Xét hai trường hợp:
+)p=3k+1(k thuộc N*)
Khi đó p2-1=(3k+1)2-1=9k2+6k+1-1=9k2+6k=3(3k2+2k)
Vì k thuộc N* nên 3k2+2k thuộc N*
Vì thế 3(3k2+2k) chia hết cho 3 nên p2-1 chi hết cho 3
+)p=3k+2(k thuộc N*)
Khi đó p2-1=(3k+2)2-1=9k2+12k+4-1=9k2+12k+3=3(3k2+4k+1)
vì k thuộc N* nên 3k2+4k+1 thuộc N*
Vì thế 3(3k2+4k+1) chia hết cho 3 nên p2-1 chia hết cho 3
Vậy nếu p là số nguyên tố lớn hơn 3 thì p2-1 chia hết cho 3
Giả sử là số nguyên tố lớn hơn , vì vậy p là số lẻ. Do đó, ta có thể biểu diễn p dưới dạng với là một số nguyên không âm.
Thay vào , ta có:
Ta nhận thấy rằng một trong hai số hoặc phải là số chẵn. Vì vậy, một trong hai số hoặc chia hết cho . Vì vậy, chia hết cho
Ngoài ra, vì p là số nguyên tố lớn hơn , nên p không chia hết cho . Vì vậy, và không thể đều chia hết cho . Do đó, hoặc phải chia hết cho . Vì vậy, chia hết cho .
Tổng hợp lại, chia hết cho và . Vì và nguyên tố cùng nhau, nên chia hết cho
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3.
Xét số nguyên tố p khi chia cho 3.
Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3
Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3
Vậy p2 - 1 chia hết cho 3.
Đúng 100%
Bạn Ninh Thế Quang Nhật ơi k cho mình một cái nhé ! Mình k cho bn rồi
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3.
Nếu p là số nguyên tố lớn hơn 3 thì p2-1=p2-12=(p-1)(p+1)
Ta đặt A=(p-1)p(p+1) thì A chia hết cho 3
Mặt khác (p;3)=1
=>(p-1)(p+1) chia hết cho 3 hay p2-1 chia hết cho 3
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3.
Vì p là số nguyên tô lớn hơn 3 nên p ko chia het cho 3
Do đó p^2 chia cho 3 dư 1 tức p^2=3k+1
=>p^2-1=3k+1-1=3k chia het cho 3(đpcm)
Vậy p^2-1 chia het cho 3
Tĩck nhé
Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3.
p là SNT, p>3 => p có dạng 3k+1 và 3k+2(k thuộc N*)
+)p=3k+1 => p^2-1 = (3k+1)^2-1
=(3k)^2+2.3k.1+1^2-1
=9.k^2+6k
=>p^2-1 chia hết cho
+)p=3k+2=> p^2-1 = (3k+2)^2-1
=(3k)^2+2.3k.2+2^2-1
=9.k^2+12k +3
=>p^2-1 chia hết cho
Vậy ..........
Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là nghiệm của đa thức ax2 + bx + c.
Chứng tỏ rằng nếu n là số tự nhiên lẻ thì tổng T= n2+4n+5 không chia hết cho 8.
vì n lẻ =>n^2 lẻ;4n lẻ=>n^2+4n+5 lẻ.mà số lẻ không chia hết cho số chẵn=>n^2+4n+5 không chia hết cho 8=>đpcm
chứng tỏ rằng nếu 3 số a, a+n,a+2n đều là số nguyên lớn hơn 3 thì n chia hết cho 6