Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy Bùi
Xem chi tiết
phamdanghoc
2 tháng 1 2016 lúc 15:35

  vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 2 
=>p^2-1 chia hết cho 2 (2) 
từ (1) và (2) => p^2-1 chia hết chia hết cho với mọi số nguyên tố p>3

Lazy kute
Xem chi tiết
Tử thần Cô Văn Nan
21 tháng 4 2016 lúc 16:40

Vì p là số nguyên tố, p>3 nên p không chia hết cho 3

Vì p không chia hết cho 3 nên p có 1 trong 2 dạng: 3k+1, 3k+2(k thuộc N*)

Xét hai trường hợp:

+)p=3k+1(k thuộc N*)

Khi đó p2-1=(3k+1)2-1=9k2+6k+1-1=9k2+6k=3(3k2+2k)

Vì k thuộc N* nên 3k2+2k thuộc N*

Vì thế 3(3k2+2k) chia hết cho 3 nên p2-1 chi hết cho 3

+)p=3k+2(k thuộc N*)

Khi đó p2-1=(3k+2)2-1=9k2+12k+4-1=9k2+12k+3=3(3k2+4k+1)

vì k thuộc N* nên 3k2+4k+1 thuộc N*

Vì thế 3(3k2+4k+1) chia hết cho 3 nên p2-1 chia hết cho 3

Vậy nếu p là số nguyên tố lớn hơn 3 thì p2-1 chia hết cho 3

Long Phạm
4 tháng 3 lúc 11:14

Giả sử  là số nguyên tố lớn hơn 3, vì vậy p là số lẻ. Do đó, ta có thể biểu diễn p dưới dạng �=2�+1, với  là một số nguyên không âm.

Thay  vào �2-1, ta có: �2 - 1 = (2�+1)2-1=4�2+4�+1-1=4�(�+1)

Ta nhận thấy rằng một trong hai số  hoặc �+1 phải là số chẵn. Vì vậy, một trong hai số  hoặc    �+1 chia hết cho 2. Vì vậy, �2-1 chia hết cho 2.4=8.

Ngoài ra, vì p là số nguyên tố lớn hơn 3, nên p không chia hết cho 3. Vì vậy,  và �+1 không thể đều chia hết cho 3. Do đó,  hoặc �+1 phải chia hết cho 3. Vì vậy, �2-1 chia hết cho 3.

Tổng hợp lại, �2-1 chia hết cho 8 và 3. Vì 8 và 3 nguyên tố cùng nhau, nên �2-1 chia hết cho 

Ninh Thế Quang Nhật
Xem chi tiết
Ninh Thế Quang Nhật
31 tháng 3 2016 lúc 20:35

 Xét số nguyên tố p khi chia cho 3.

Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3
Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3
Vậy p2 - 1 chia hết cho 3.

Đúng 100%

Anonymous
31 tháng 3 2016 lúc 20:39

Bạn Ninh Thế Quang Nhật ơi k cho mình một cái nhé ! Mình k cho bn rồi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2019 lúc 12:23

Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)

Ta có a = 7m + r, b = 7n + r (m, n ∈ N)

Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)

Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7

Ice Wings
Xem chi tiết
Nguyễn Tuấn Minh
15 tháng 4 2016 lúc 20:16

Nếu p là số nguyên tố lớn hơn 3 thì p2-1=p2-12=(p-1)(p+1)

Ta đặt A=(p-1)p(p+1) thì A chia hết cho 3

Mặt khác (p;3)=1

=>(p-1)(p+1) chia hết cho 3 hay p2-1 chia hết cho 3

Lê Đặng Gia Khánh
Xem chi tiết
Hoàng Phúc
27 tháng 12 2015 lúc 13:03

Vì p là số nguyên tô lớn hơn 3 nên p ko chia het cho 3

Do đó p^2 chia cho 3 dư 1 tức p^2=3k+1

=>p^2-1=3k+1-1=3k chia het cho 3(đpcm)

Vậy p^2-1 chia het cho 3

Tĩck nhé

Ice Wings
Xem chi tiết
Phương Linh
15 tháng 4 2016 lúc 23:24

p là SNT, p>3 => p có dạng 3k+1 và 3k+2(k thuộc N*)

+)p=3k+1 => p^2-1 = (3k+1)^2-1

                              =(3k)^2+2.3k.1+1^2-1

                              =9.k^2+6k 

                            =>p^2-1 chia hết cho

+)p=3k+2=> p^2-1 = (3k+2)^2-1

                              =(3k)^2+2.3k.2+2^2-1

                              =9.k^2+12k +3

                            =>p^2-1 chia hết cho 

Vậy ..........

Nguyễn Minh Hiển
Xem chi tiết
Nguyễn Phạm Minh Châu
Xem chi tiết
Jack Bond
28 tháng 2 2016 lúc 13:06

vì n lẻ =>n^2 lẻ;4n lẻ=>n^2+4n+5 lẻ.mà số lẻ không chia hết cho số chẵn=>n^2+4n+5 không chia hết cho 8=>đpcm

Phạm Thị Thủy Diệp
Xem chi tiết
HOANGTRUNGKIEN
2 tháng 2 2016 lúc 20:58

bai toan nay kho qua