Lời giải:
Nếu $p\vdots 3$ thì do $p$ là snt nên $p=3$
$\Rightarrow p+2=5; p+4=7$ đều là snt (thỏa mãn).
Khi đó: $p^3+2=3^3+2=29$ là snt (đpcm)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k$ tự nhiên.
$\Rightarrow p+2=3k+1+2=3k+3=3(k+1)\vdots 3$. Mà $p+2>3$ với mọi $p$ nguyên tố nên $p+2$ không thể là snt (trái với yêu cầu đề - loại)
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k$ tự nhiên.
$\Rightarrow p+4=3k+2+4=3k+6=3(k+2)\vdots 3$. Mà $p+4>3$ với mọi $p$ nguyên tố nên $p+4$ không thể là snt (trái với yêu cầu đề - loại)
Vậy ta có đpcm.