Tìm max:
\(A=-x^2-4x+16\)
\(B=-x^2+2xy-4y^2+2x+10y-2017\)
Tìm max:
a) P = - x2 - 4x +16
b) Q = - x2 + 2xy - 4y2 + 2x + 10y - 2017
a)\(P=-x^2-4x+16\)
\(=-x^2-4x-4-12\)
\(=-\left(x^2+4x+4\right)-12\)
\(=-\left(x+2\right)^2-12\le-12\)
Đẳng thức xảy ra khi \(x=-2\)
b)\(-x^2+2xy-4y^2+2x+10y-2017\)
\(=\left(-x^2+2xy-y^2+2x-2y-1\right)+\left(-3y^2+12y-12\right)-2004\)
\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)-2004\)
\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-3\left(y-2\right)^2-2004\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2-2004\le-2004\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Tìm min:
a) H = x2 - 4x + 16
b) K = 2x2 + 9y2 - 6xy - 8x - 12y + 2018
Tìm max:
a) P = - x2 - 4x +16
b) Q = - x2 + 2xy - 4y2 + 2x + 10y - 2017
Nỗi hứng lm cho vui!
Bài 1:
a) H = \(x^2-4x+16=\left(x^2-4x+4\right)+12=\left(x-2\right)^2+12\)
Vì \(\left(x-2\right)^2\ge0\) => H \(\ge\) 12
=> Dấu = xảy ra <=> \(x=2\)
b) K = \(2x^2+9y^2-6xy-8x-12y+2018\)
= \(\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+\left(x^2-12x+36\right)+1982\)
= \(\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-6\right)^2+1978\)
= \(\left(x-3y+2\right)^2+\left(x-2\right)^2+1978\)
Vì \(\left\{{}\begin{matrix}\left(x-3y+2\right)^2\ge0\\\left(x-6\right)^2\ge0\end{matrix}\right.\) => K \(\ge\) 1978
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=\dfrac{2+x}{3}\\x=6\end{matrix}\right.\) => \(x=6;y=\dfrac{8}{3}\)
Bài 2:
a) P = \(-x^2-4x+16=-\left(x^2+4x+4\right)+20\)
= \(-\left(x+2\right)^2+20\le20\)
=> Dấu = xảy ra <=> \(x=-2\)
b) \(Q=-x^2+2xy-4y^2+2x+10y-2017\)
= \(-\left[\left(x^2-2xy+y^2\right)+3\left(y^2-4y+4\right)-2\left(x-y\right)+2005\right]\)
= \(-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2004\right]\)
= \(-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]-2004\)
Vì \(\left\{{}\begin{matrix}-\left(x-y-1\right)^2\le0\\3\left(y-2\right)^2\le0\end{matrix}\right.\) => Q \(\le-2004\)
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\) <=> \(x=3;y=2\)
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm Max : B= -x^2 + 2xy - 4y^2 + 2x + 10y - 8
Tìm max, min:
\(A=x^2+2xy-4y+2017\)
\(B=x^2-2x+2017\)
\(C=-4x^2+8xy-3y^2+y-2017\)
\(D=-2x^2+4x+2017\)
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
\(A=x^2+2xy+3y^2-4y+2017\)
\(A=\left(x^2+2xy+y^2\right)+\left(2y^2-4y+2\right)+2015\)
\(A=\left(x^2+2xy+y^2\right)+2\left(y^2-2y+1\right)+2015\)
\(A=\left(x+y\right)^2+2\left(y-1\right)^2+2015\ge2015\)
Vậy Amin=2015 <=> x=-1 và y=1
Tìm min: a, A=9x^2 - 6x +5 b, B= 2x^2 + 2xy + y^2 -2x +2y+2
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm Max:
a) A=-x2 +2xy -4y2 +2x + 10y +5
b) B=-x2 -2y2 -2xy +2x -2y -15
\(A=-\left(x^2-2x\left(y+1\right)+\left(y+1\right)^2\right)-\left(4y^2-10y-5-\left(y+1\right)^2\right)\)
\(=-\left(x-y-1\right)^2-\left(3y^2-12y-6\right)\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+18\le18\)
Max A=18 khi y=2; x=3
\(B=-\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)-\left(2y^2+2y-\left(y-1\right)^2\right)-15\)
\(=-\left(x+y-1\right)^2-\left(y+2\right)^2-10\le-10\)
Max B=-10 khi y=-2; x= 3
1. Tìm min:
a, x2-x+1
b, 3x2+5x-2
c, x2+2y2-2xy-4y+5
d, x2+2y2+2xy-4x+2y+2017
e, 2x2+4y2-4xy-4x-4y+2003
2. Tìm max:
a, -x2+3x
b, -2x2+x-1
c, -x2-y2+xy+2x+2y
d, -5x2-2xy-2y2+14x+10y
e, -8x2-3y2-26x+6y+100
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
Bài 1: tìm max: -5x2 -4x-19/5
bài 2: Tìm Min
A= -x2 +2xy-4y2 +2x+10y+5
B= -x2-2y2 - 2xy +2x -2y -15
Giúp mình với mình cần gấp lắm
Bài 1 :
=-5(x^2+4/5x+19/25)
=-5(x^2+2x.2/5+4/25+3/5)
=-5(x+2/5)^2-3
Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3
Vậy Min là-3