Tìm điều kiện của tham số m để (m-1)x^2-2(m-2)x+2-m>0 vô nghiệm với mọi x thuộc R
Tìm điều kiện của tham số m để phương trình m x 2 – 2 ( m – 2 ) x + m + 5 = 0 vô nghiệm
A. m > 8 10
B. m > 19 8
C. m = 19 8
D. m < 9 18
TH1: m = 0 ta có phương trình 4x + 5 = 0 ⇔ x = − 5 4
TH2: m ≠ 0
Ta có ∆ = [−2(m – 2)]2 – 4m (m + 5) = − 36m + 16
Để phương trình đã cho vô nghiệm thì:
m ≠ 0 − 36 m + 16 < 0 ⇔ m ≠ 0 36 m > 16
⇔ m ≠ 0 m > 8 19 ⇒ m > 8 19
Vậy với m > 8 19 thì phương trình đã cho vô nghiệm
Đáp án cần chọn là: A
tìm tất cả các giá trị nguyên của tham số m để bất phương trình x^2 -2.(m-1).x+4.m+8>=0 nghiệm đúng với mọi x thuộc R
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow m^2-6m-7\le0\)
\(\Rightarrow-1\le m\le7\)
\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)
cho phương trình \(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}\)=0 với là ẩn , m là tham số. tìm điều kiện của m để phương trình vô nghiệm
ĐANG CẦN GẤP, CẢM ƠN!!!
ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)
\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1)
=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0
<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0
< => ( 2m + 5 ) x + 2 = 0 (2)
TH1: 2m + 5 = 0 <=> m = -5/2
Khi đó (2) trở thành: 0x + 2 = 0 => phương trình vô nghiệm với mọi x
=> m = -5/2 thỏa mãn
TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2
khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)
( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1
<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)
Giải: \(-\frac{2}{2m+5}=-m-1\)
<=> 2 = ( m + 1 ) ( 2m + 5 )
<=> 2m^2 +7m +3= 0
<=> m = -1/2 hoặc m = -3 (tm m khác -5/2)
Giải: \(-\frac{2}{2m+5}=2\)
<=> 2m + 5 = - 1 <=> m = - 3 (tm)
Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.
số giá trị nguyên của tham số m thuộc khoảng (-10;10) để bất phương trình x (x-2)-m|x-1| +2>0 nghiệm đúng với mọi x thuộc R
Giải giúp với ạ
Cho tam thức bậc 2 f(x)=(m-1)^2-2(m-2)x+m-3; (m#1), (m là tham số). Tìm điều kiện của m để f(x) luôn luôn âm với mọi x thuộc R
Tam thức bậc hai \(f\left(x\right)=\left(m-1\right)x^2-2\left(m-2\right)x+m-3\) với \(m\ne1\), đúng chứ?
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta'< 0\end{matrix}\right.\)
\(\Delta'=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)=m^2-4m+4-m^2+3m+m-3=1>0\)
Vậy không có giá trị nào của m thỏa mãn đề bài.
Tìm điều kiện của tham số m để phương trình x 2 + ( 1 – m ) x − 3 = 0 vô nghiệm.
A. m = 0
B. Không tồn tại m
C. m = −1
D. m = 1
Phương trình x2 + (1 – m)x − 3 = 0 (a = 1; b = 1− m; c = −3)
⇒ ∆ = (1 – m)2 – 4.1.(−3) = (1 – m)2 + 12 12 > 0; ∀ m
Nên phương trình đã cho luôn có hai nghiệm phân biệt
Hay không có giá trị nào của m để phương trình vô nghiệm
Đáp án cần chọn là: B
1/ Tìm các giá trị của tham số m để bpt ( m-1) x^2- ( m-1) x+1>0 nghiệm đúng vs mọi giá trị của x. 2/ Tìm giá trị của tham số m để pt x^2 - ( m-2) x+m^2 -4m=0 có 2 nghiệm trái dấu. 3/ Tìm giá trị của tham số m để pt x^2 -mx+1=0 có 2 nghiệm phân biệt.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
cho phương trình X^2+2(m+1)x+4=0, trong đó m là tham số. Điều kiện của tham số m đẻ phương trình đã cho vô nghiệm là gì?
phương trình vô nghiệm:
\(\Delta'< 0\Leftrightarrow\left(m+1\right)^2-4< 0\Leftrightarrow-2< m-1< 2\Leftrightarrow-1< m< 3\)