Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
A. Domina
Xem chi tiết
Lê Minh Thuận
Xem chi tiết

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m+1}{m^2}\ne\dfrac{-2}{-1}=2\)

=>\(2m^2\ne m+1\)

=>\(2m^2-m-1\ne0\)

=>\(\left(m-1\right)\left(2m+1\right)\ne0\)

=>\(m\notin\left\{1;-\dfrac{1}{2}\right\}\)

\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2\cdot x-2y=2m^2+4m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m^2-m-1\right)=2m^2+4m-m+1\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\cdot\left(m-1\right)\left(2m+1\right)=2m^2+3m+1=\left(m+1\right)\left(2m+1\right)\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\left(m+1\right)x-\left(m-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\dfrac{m^2+2m+1-\left(m-1\right)^2}{m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\y=\dfrac{m^2+2m+1-m^2+2m-1}{2m-2}=\dfrac{4m}{2m-2}=\dfrac{2m}{m-1}\end{matrix}\right.\)

Để x,y đều nguyên thì \(\left\{{}\begin{matrix}m+1⋮m-1\\2m⋮m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-1+2⋮m-1\\2m-2+2⋮m-1\end{matrix}\right.\)

=>\(2⋮m-1\)

=>\(m-1\in\left\{1;-1;2;-2\right\}\)

=>\(m\in\left\{2;0;3;-1\right\}\)

 

Nguyễn Việt Lâm
18 tháng 1 lúc 18:48

\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2x-2y=2m^2+4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m^2-m-1\right)x=2m^2+3m+1\\y=m^2x-m^2-2m\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(2m^2-m-1\ne0\Rightarrow m\ne\left\{1;-\dfrac{1}{2}\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{2m^2-2m-1}{2m^2+3m+1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{\left(m+1\right)\left(2m+1\right)}=\dfrac{m-1}{m+1}\\y=m^2x-m^2-2m=\dfrac{-4m^2-2m}{m+1}\end{matrix}\right.\)

Để x nguyên \(\Rightarrow\dfrac{m-1}{m+1}\in Z\Rightarrow1-\dfrac{2}{m+1}\in Z\)

\(\Rightarrow\dfrac{2}{m+1}\in Z\)

\(\Rightarrow m+1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow m=\left\{-3;-2;0;1\right\}\)

Thay vào y thấy đều thỏa mãn y nguyên.

Vậy ...

Xem chi tiết
Xem chi tiết

(m+1)x+2y=m-1                          (m+1)x-2y=m-1    (1)

                                        <=> 

2mx-yx-y=m2+2m                       2.m^2.x-2y=2m^2+4m    (2)

(2)-(1) ta được 

(2.m^2-m-1)x=2.m^2+3m+1

<=>x=(2.m^2+3m+1)/(2.m^2-m-1)

<=>x=1   +   4m+2/2.m^2-m-1

<=>x=1+      2m+1/(m-1)(m+1/2)   (3)

từ (3) ta đã thấy điều kiện của hệ số m đã cho  khác 1

và điều kiện để hệ có nghiệm duy nhất  là m khác 1 ; m khác -1/2

với các điều kiện đó từ (3) => x=1+  2/m-1   (#)

thay (#) vào (1) ta được m+1+     2(m+1)/m-1   -2y=m-1

=>y = 1+ (m+1)/m-1  =2 +    2/m-1 (##)

từ (#) và (##) ta => x; y là nghiệm nguyên duy nhất

m-1 thuộc Ư(2)=+-1;+-2

=>m=-1;0;2;3

HOK TỐT nhé

Khách vãng lai đã xóa
Hàn Minh Nguyệt
Xem chi tiết
học sinh kém
10 tháng 2 2021 lúc 15:34

a, tự làm 

b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)

để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)

c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)

để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)

d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)

\(\Leftrightarrow0m=-3\)(vô lí)

e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))

để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)

\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)

Khách vãng lai đã xóa
hào Nguyễn
Xem chi tiết
Nguyễn Quang Vinh
25 tháng 3 2020 lúc 8:06

khó quá nhờ

Khách vãng lai đã xóa
PHẠM THỊ THIÊN HUẾ
Xem chi tiết
nguyễn hà
Xem chi tiết
Limited Edition
Xem chi tiết
Trần Minh Hoàng
18 tháng 1 2021 lúc 12:19

Với m = 0 ta có hpt \(\left\{{}\begin{matrix}2y=1\\2x=-1\end{matrix}\right.\). HPT này không có nghiệm nguyên.

Xét \(m\neq 0\).

Để hpt có nghiệm duy nhất thì: \(\dfrac{m}{2}\ne\dfrac{2}{m}\Leftrightarrow m\ne\pm2\).

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2mx+4y=2m+2\\2mx+m^2y=2m^2-m\end{matrix}\right.\Rightarrow\left(m^2-4\right)y=2m^2-3m-2\).

\(\Rightarrow y=\dfrac{2m^2-3m-2}{m^2-4}=\dfrac{2m+1}{m+2}\).

Từ đó ta có \(x=\dfrac{m+1-\dfrac{2\left(2m+1\right)}{m+2}}{m}=\dfrac{m^2+3m+2-4m-2}{m\left(m+2\right)}=\dfrac{m^2-m}{m\left(m+2\right)}=\dfrac{m-1}{m+2}\).

Vậy m là các số sao cho \(\dfrac{2m+1}{m+2}\) là số nguyên (Do \(\dfrac{2m+1}{m+2}-\dfrac{m-1}{m+2}=1\) là số nguyên).