Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gray Fulbuster
Xem chi tiết
Nguyen Thi Phung
14 tháng 6 2017 lúc 15:06

x2-yx +5 =0\(\Rightarrow A=y^2-20>=0\)

\(\sqrt{x+y-5}=20-y^2>=0.\)

\(\Rightarrow y^2=20\)

\(\Rightarrow y=2\sqrt{5}\)

và x =y/2 =\(\sqrt{5}\)

và x +y -5 =0 .(vô lí ) .

\(\Rightarrow\)HPT Vô nghiệm .

Không Bít
Xem chi tiết
Nguyễn Thị Mát
29 tháng 11 2019 lúc 17:44

a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)

Lấy (1) trừ (2) :

\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)

Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)

Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)

Khách vãng lai đã xóa
Nguyễn Thị Mát
29 tháng 11 2019 lúc 17:50

b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)

Lấy (2 ) -(1) thu được :

\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)

Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)

Vậy ......

Khách vãng lai đã xóa
thuyphi nguyen
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
vũ tiền châu
2 tháng 11 2017 lúc 0:20

câu này quen ha

cái này giả sử x+1>=y-5, rồi cho chúng = nhau

hoặc liên hợp cũng được (PT1)

Giao Khánh Linh
Xem chi tiết
alibaba nguyễn
21 tháng 10 2019 lúc 11:19

\(\Leftrightarrow\hept{\begin{cases}x+y=1,5\\\sqrt{x^2+2}+\sqrt{y^2+3}=3,5\end{cases}}\)

\(\Rightarrow\sqrt{\left(1,5-y\right)^2+2}+\sqrt{y^2+3}=3,5\)

\(\Leftrightarrow\sqrt{\left(1,5-y\right)^2+2}=3,5-\sqrt{y^2+3}\)

Bình phương 2 vế 2 lần là tìm được y thế vô tìm được x

Khách vãng lai đã xóa
Ngô Đức Long
Xem chi tiết
Princess U
Xem chi tiết
Nguyễn Linh Chi
21 tháng 2 2019 lúc 8:18

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

Incursion_03
21 tháng 2 2019 lúc 8:25

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

Princess U
21 tháng 2 2019 lúc 17:29

cảm ơn mọi người ạ <3

Nguyễn Phương Thảo
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Trần Minh Hoàng
18 tháng 12 2020 lúc 19:36

Đề bài: Giải hệ phương trình:

\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).

Giải:

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).

\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).

+) TH1: \(x=y+2\): Thay vào (2) ta được:

\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)

\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)

\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)

\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)

\(\Leftrightarrow16y^4+57y^2=0\)

\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).

+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):

\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).

Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).

Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).

Thử lại không có gt nào thỏa mãn.

Vậy...