Giải hệ phương trình
\(\hept{\begin{cases}\sqrt{x+y-5}=20-y^2\\x.y=x^2+5\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\sqrt{x+y-5}=20-y^2\\x.y=x^2+5\end{cases}}\)
Mình đang cần gấp,giúp vs
x2-yx +5 =0\(\Rightarrow A=y^2-20>=0\)
\(\sqrt{x+y-5}=20-y^2>=0.\)
\(\Rightarrow y^2=20\)
\(\Rightarrow y=2\sqrt{5}\)
và x =y/2 =\(\sqrt{5}\)
và x +y -5 =0 .(vô lí ) .
\(\Rightarrow\)HPT Vô nghiệm .
Giải các hệ phương trình:
\(\hept{\begin{cases}2\left(x+y\right)+3\left(x-y\right)=4\\x+y+2\left(x-y\right)=5\end{cases}}\)
b ) \(\hept{\begin{cases}\sqrt{3}-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}}\)
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
giải hệ phương trình
a. \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
b,\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
c,\(\hept{\begin{cases}4\left(x^2+y^2\right)+4xy+\frac{3}{\left(x+y\right)^2}=7\\\end{cases}}\)
giải hệ phương trình:\(\hept{\begin{cases}\sqrt{x+1}+\sqrt{x+3}+\sqrt{x+5}=\sqrt{y-1}+\sqrt{y-3}+\sqrt{y-5}\\x+y+x^2+y^2=80\end{cases}}\)
câu này quen ha
cái này giả sử x+1>=y-5, rồi cho chúng = nhau
hoặc liên hợp cũng được (PT1)
Giải hệ phương trình\(\hept{\begin{cases}\sqrt{x^2+2}-x+\sqrt{y^2+3}-y=2\\\sqrt{x^2+2}+x+\sqrt{y^2+3}+y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1,5\\\sqrt{x^2+2}+\sqrt{y^2+3}=3,5\end{cases}}\)
\(\Rightarrow\sqrt{\left(1,5-y\right)^2+2}+\sqrt{y^2+3}=3,5\)
\(\Leftrightarrow\sqrt{\left(1,5-y\right)^2+2}=3,5-\sqrt{y^2+3}\)
Bình phương 2 vế 2 lần là tìm được y thế vô tìm được x
giải hệ phương trình \(\hept{\begin{cases}\sqrt{3+x^2}+2\sqrt{x+3}=5+\sqrt{y+3}\\\sqrt{3+y^2}+2\sqrt{y+3}=5+\sqrt{x+3}\end{cases}}\)
Đồng bào thân thiện đáng yêu cứu toy với :((
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt[3]{\frac{2x+1}{y+2}}+\sqrt[3]{\frac{y+2}{2x+1}}=2\\4x+3y=7\end{cases}}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{x^2+2y+3}+2y-3=0_{ }\\2\left(2y^3+x^3\right)+3y\left(x+1\right)^2+6x\left(x+1\right)+2=0\end{cases}^{ }}\)
Giải hệ phương trình : \(\hept{\begin{cases}\sqrt{2x-3}=\left(y^2+2016\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{cases}}\)
Cảm ơn mọi người nhé hiuhiu <3
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
giải hệ phương trình: \(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}y^3-12y-x^3+6x^2-16=0\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\end{cases}}\)
Đề bài: Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).
Giải:
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).
\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).
+) TH1: \(x=y+2\): Thay vào (2) ta được:
\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)
\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)
\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)
\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)
\(\Leftrightarrow16y^4+57y^2=0\)
\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).
+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):
\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).
Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).
Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).
Thử lại không có gt nào thỏa mãn.
Vậy...