Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NGUYỄN MINH HUY

Giải hệ phương trình:

\(\hept{\begin{cases}y^3-12y-x^3+6x^2-16=0\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\end{cases}}\)

Trần Minh Hoàng
18 tháng 12 2020 lúc 19:36

Đề bài: Giải hệ phương trình:

\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).

Giải:

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).

\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).

+) TH1: \(x=y+2\): Thay vào (2) ta được:

\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)

\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)

\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)

\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)

\(\Leftrightarrow16y^4+57y^2=0\)

\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).

+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):

\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).

Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).

Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).

Thử lại không có gt nào thỏa mãn.

Vậy...

 


Các câu hỏi tương tự
NGUYỄN MINH HUY
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Big City Boy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết