Tim gtln va nho nhat cua x, y thuc thoa man:
X2 + XY + Y2 - Y = 0
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
1.nghiem nho nhat cua da thuc : 11x-2x2-15
2.gia tri x nho nhat thoa man 4x2+7x+3=0
3.gia tri cua x3+y3biet x+y=2 va x2+y2=20
cho hai so thuc x,y thoa man x^2+y^2=1. tim gia tri nho nhat cua p=x^6+y^6
Áp dụng \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
Ta có \(P=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\)
\(\Rightarrow P=1-3x^2y^2\ge1-3\dfrac{\left(x^2+y^2\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow P_{min}=\dfrac{1}{4}\) khi \(x^2=y^2=\dfrac{1}{2}\)
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim gia tri nho nhat cua bieu thuc M=1/16x+1/4y+1/z
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)
\(=\frac{49}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)
\(\Rightarrow1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\frac{1}{27}\ge xyz\)
Ta có \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 )
Xét \(3\sqrt[3]{\frac{1}{64xyz}}\)
Ta có \(\frac{1}{27}\ge xyz\)
\(\Rightarrow\frac{64}{27}\ge64xyz\)
\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)
\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)
Vậy \(M_{min}=\frac{9}{4}\)
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)
Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)
=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)
Cho cac so thuc x , y thay doi thoa man x + y = 2 . Tim gia tri nho nhat cua bieu thuc P = ( x4 + 1 )(y4 + 1) + 2013
ap dung bunhiacopki
\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)
do do P>=4+2013=2017
= xảy ra <=>x=y=1
biet hai so nguyen x,y thoa man |x|+|y|=8.Tim gia tri nho nhat cua tich xy
Cho hai so Thưc duong x, y thoa man x>=2y.Tim gia tri nho nhat cua bieu thuc P=(2x^2+y^2-2xy):xy
Cho x-y=2,tim gia tri nho nhat cua da thuc Q=xy+4
x-y=2
=>x=y+2
Thay x=y+2 vào Q,ta đc:
\(Q=\left(y+2\right).y+4=y^2+2y+4=y^2+2y+1+3\)
\(Q=y^2+y+y+1+3=y\left(y+1\right)+\left(y+1\right)+3=\left(y+1\right)\left(y+1\right)+3=\left(y+1\right)^2+3\)
Vì \(\left(y+1\right)^2\ge0\Rightarrow\left(y+1\right)^2+3\ge3\)
=>GTNN của Q là 3
Dấu "=" xảy ra <=> y+1=0<=>y=-1
Vậy.............
x-y=2=> x=2+y
Q=xy+4=(2+y)y+4=2y+y^2+4
ta có y^2>/0=> 2y+y^2>/0=> 2y+y^2+4>/4
vậy Min Q là 4
Cho x. Thuoc (-2 , -1 , 0 , 1 ,,2 , ....... ,11)
Y thuoc ( -89 , -88 , .... , 0. , 1
Tim gia tri lon nhat ( GTLN) va gia tri nho nhat ( GTNN)cua hieu x-y