Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 13:50

Gọi \({x_1};{x_2};...;{x_{20}}\) là doanh thu bán hàng của các ngày được xếp theo thứ tự không giảm.

Ta có:

\({x_1},{x_2} \in \begin{array}{*{20}{c}}{\left[ {5;7} \right)}\end{array};{x_3},...,{x_9} \in \begin{array}{*{20}{c}}{\left[ {7;9} \right)}\end{array};{x_{10}},...,{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array};{x_{17}},{x_{18}},{x_{19}} \in \begin{array}{*{20}{c}}{\left[ {11;13} \right)}\end{array};{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {13;15} \right)}\end{array}\)

Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right)\).

Ta có: \(n = 20;{n_j} = 7;C = 2 + 7 = 9;{u_j} = 9;{u_{j + 1}} = 11\)

Do \({x_{15}},{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 9 + \frac{{\frac{{3.20}}{4} - 9}}{7}.\left( {11 - 9} \right) \approx 10,7\)

Chọn B.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 21:00

Ta có \({Q_1} = 56;{Q_3} = 84\)

\({\Delta _Q} = {Q_3} - {Q_1} = 84 - 56 = 28\)

\({Q_1} - 1,5{\Delta _Q} = 56 - 1,5.28 = 14\)

\({Q_3} + 1,5.{\Delta _Q} = 84 - 1,5.28 = 126\)

Ta thấy 10 < 14 nên 10 là giá trị bất thường

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 21:17

a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là

\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)

b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:

2 5 6 7 8 9 10 11 12 14 16

+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 21:01

Tham khảo:

n=10

Giả sử sau khi sắp xếp 10 số dương theo thứ tự không giảm thì được:

=> Trung vị là giá trị trung bình của số thứ 5 và thứ 6.

=> \({Q_1}\) là số thứ 3 và \({Q_3}\) là số thứ 8.

a) Khi nhân mỗi giá trị của mẫu số liệu với 2 thì:

+ Số lớn nhất tăng 2 lần và số nhỏ nhất tăng 2 lần

=> R tăng 2 lần

+ \({Q_1}\) và \({Q_3}\) tăng 2 lần

=> Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\) tăng 2 lần.

+ Giá trị trung bình tăng 2 lần

=> Độ lệch của mỗi giá trị so với giá trị trung bình \(\left| {{x_i} - \overline x} \right|\) cũng tăng 2 lần

=> \({\left( {{x_i} - \overline x} \right)^2}\) tăng 4 lần

=> Phương sai tăng 4 lần

=> Độ lệch chuẩn tăng 2 lần.

Vậy R tăng 2 lần, khoảng tứ phân vị tăng 2 lần và độ lệch chuẩn tăng 2 lần.

b) Cộng mỗi giá trị của mẫu số liệu với 2 thì

+  Số lớn nhất tăng 2 đơn vị và số nhỏ nhất tăng 2 đơn vị

=> R không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

+ \({Q_1}\) và \({Q_3}\) tăng 2 đơn vị

=> Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

+ Giá trị trung bình tăng 2 đơn vị

=> Độ lệch của mỗi giá trị so với giá trị trung bình \(\left| {{x_i} - \overline x} \right|\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

=> \({\left( {{x_i} - \overline x} \right)^2}\) không đổi

=> Phương sai không đổi.

=> Độ lệch chuẩn không đổi.

Vậy khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn đều không đổi.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2017 lúc 13:29

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2019 lúc 13:49

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 6 2017 lúc 6:26

Chọn B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2017 lúc 15:42

Chọn A.

Giả sử các giá trị của mẫu số liệu là a; b; c; d với  0 < a < b < c < d và a; b; c;d là số tự  nhiên.

+ Ta có 

Mà số trung bình là 6 nên a + b + c + d = 24

Suy ra a + d = 14

+ Ta có  hay  1 < b < 5 mà b  là số tự nhiên nên b = 2; 3; 4

+ Nếu b = 2  thì c = 8, mà 0 < a < b; a là  số tự nhiên nên a = 1 và d = 13

Khi đó các giá trị của mẫu số liệu là 1; 2; 8; 13

+ Nếu b = 3 thì c = 7, mà 0 < a < b; a số tự nhiên nên có 2 khả năng xảy ra:  a = 1 ; d = 13 hoặc a = 2 ; d = 12

Khi đó có hai mẫu số liệu thỏa đề bài có giá trị là 1;3;7;13 và 2;3;7;12

+ Nếu b = 4 thì c = 6, mà 0 < a < b; a là số tự nhiên nên có 3 khả năng xảy ra:

a = 1; d = 13 hoặc a = 2 ; d = 12 hoặc a = 3 ; d = 11

Khi đó có ba mẫu số liệu thỏa đề bài có giá trị là 1;4;6;13 hoặc  2;4;6;12 hoặc  3;4;6;11

Suy ra với mẫu số liệu có các giá trị là 3;4;6;11 thì hiệu của giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đạt giá trị nhỏ nhất.

Buddy
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 13:55

Tham khảo:

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Số trung bình của số liệu là: \(\bar x \approx 15821,87\)

Tứ phân vị thứ nhất là: \({x_8} = 15139\)

Tứ phân vị thứ hai là: \({x_{16}} = 15685\)

Tứ phân vị thứ ba là: \({x_{24}} = 16586\)

Mẫu số liệu có 1 giá trị ngoại lệ.

b)

c) Ta có:

• Số ca nhiễm mới SARS-CoV-2 trung bình trong tháng 12/2021 tại Việt Nam là:

\(\bar x = \frac{{14.14,74 + 14.16,25 + 2.17,75 + 0.19,25 + 1.20,75}}{{31}} \approx 15,81\)

• Gọi \({x_1};{x_2};...;{x_{31}}\) số ca nhiễm mới SARS-CoV-2 mỗi ngày trong tháng 12/2021 tại Việt Nam được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{14}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {14;15,5} \right)}\end{array}}\end{array}}\end{array};{x_{15}},...,{x_{28}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}}\end{array};{x_{29}},{x_{30}} \in \begin{array}{*{20}{c}}{\left[ {17;18,5} \right)}\end{array};{x_{31}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {20;21,5} \right)}\end{array}}\end{array}\)

Tứ phân vị thứ hai của dãy số liệu là: \({x_{16}}\)

Ta có: \(n = 31;{n_m} = 14;C = 14;{u_m} = 15,5;{u_{m + 1}} = 17\)

Do \({x_{16}} \in \begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 15,5 + \frac{{\frac{{31}}{2} - 14}}{{14}}.\left( {17 - 15,5} \right) \approx 15,66\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_8}\).

Ta có: \(n = 31;{n_m} = 14;C = 0;{u_m} = 14;{u_{m + 1}} = 15,5\)

Do \({x_8} \in \begin{array}{*{20}{c}}{\left[ {14;15,5} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 14 + \frac{{\frac{{31}}{4} - 0}}{{14}}.\left( {15,5 - 14} \right) \approx 14,83\)

Tứ phân vị thứ ba của dãy số liệu là: \({x_{24}}\).

Ta có: \(n = 31;{n_j} = 14;C = 14;{u_j} = 15,5;{u_{j + 1}} = 17\)

Do \({x_{24}} \in \begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 15,5 + \frac{{\frac{{3.31}}{4} - 14}}{{14}}.\left( {17 - 15,5} \right) \approx 16,49\)