Bài 1: Tìm x, y thuộc N. Biết \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
1) Tìm x;y thuộc N thỏa :
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
?Bài toán siêu của dễ , có ai lm dk ko
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Leftrightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}\)
\(\Leftrightarrow\frac{xy-27}{9y}=\frac{1}{18}\)
\(\Leftrightarrow18\left(xy-27\right)=9y\)
\(\Leftrightarrow18xy-486-9y=0\)
\(\Leftrightarrow2xy-y-54=0\)
......
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy-27}{9y}=\frac{1}{18}\)
\(\Rightarrow18xy-486=9y\)
\(\Rightarrow2xy-54=y\)
\(\Rightarrow2xy-y=54\)
\(\Rightarrow y\left(2x-1\right)=54\)
Dễ thấy 2x - 1 lẻ ; x, y là số tự nhiên
Xét :
(+) Với \(\begin{cases}y=54\\2x-1=1\end{cases}\)\(\Rightarrow\begin{cases}y=54\\x=1\end{cases}\)
(+) Với \(\begin{cases}y=18\\2x-1=3\end{cases}\)\(\Rightarrow\begin{cases}y=18\\x=2\end{cases}\)
(+) Với \(\begin{cases}y=6\\2x-1=9\end{cases}\)\(\Rightarrow\begin{cases}y=6\\x=5\end{cases}\)
(+) Với \(\begin{cases}y=2\\2x-1=27\end{cases}\)\(\Rightarrow\begin{cases}y=2\\x=14\end{cases}\)
Vậy \(\left(y;x\right)\in\left\{\left(54;1\right);\left(18;2\right);\left(6;5\right);\left(2;14\right)\right\}\)
ta có \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
=> \(\frac{2xy}{18y}-\frac{54}{18y}=\frac{y}{18y}\)
=> 2xy-54=y
=> 2xy-y=54
=> y(2x-1)=54 (1)
Vì 54 là số chẵn
2x-1 lại là số lẽ nên
y phải là số chẵn
=> \(\frac{54}{y}\) là số chẵn
mặt khác từ (1) ta có
y(2x-1)=54
=> 2x =\(\frac{54}{y}+1\)
trong khi đó là số chẵn (cmt)
=>\(\frac{54}{y}+1\) là số lẽ và không chia hết cho y nên y không thuộc N
Vậy không có x;y thuộc N thoả \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
bài 1: Tìm x thuộc Z, biết
\(\frac{111}{37}\)< x <\(\frac{91}{13}\) \(\frac{-84}{14}\)< 3x < \(\frac{108}{9}\)
bài 2: Tìm n thuộc Z để 3 phân số \(\frac{-12}{n}\); \(\frac{15}{n-2}\); \(\frac{8}{n+1}\)đồng thời thuộc Z
bài 3: Tìm x biết
\(\frac{x-1}{9}\)= \(\frac{8}{3}\) \(\frac{-x}{4}=\frac{-9}{x}\) \(\frac{x}{4}=\frac{18}{x+1}\)
bài 4: Tìm x,y thuộc Z
\(\frac{x-4}{y-3}=\frac{4}{3}\)và x-y=5
Bài 3
\(\frac{x-1}{9}=\frac{8}{3}\)
\(\Rightarrow\left(x-1\right).3=8.9\)
\(\Rightarrow\left(x-1\right).3=72\)
\(\Rightarrow x-1=24\)
\(\Rightarrow x=25\)
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=\left(-9\right).4\)
\(\Rightarrow-x=-36\)
\(\Rightarrow x=36\)
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Rightarrow x.\left(x+1\right)=4.18\)
\(\Rightarrow x.\left(x+1\right)=72\)
Vì x và x + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow x\left(x+1\right)=8.9\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=8\end{cases}}\)
Bài 4
\(\frac{x-4}{y-3}=\frac{4}{3},x-y=5\)
Ta có :
\(x-y=5\)
\(\Rightarrow x=5+y\)
\(\Rightarrow\frac{y+5-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow\frac{y+1}{y-3}=\frac{4}{3}\)\(\)
\(\Rightarrow\left(y+1\right).3=\left(y-3\right).4\)
\(\Rightarrow y.3+1.3=y.4-3.4\)
\(\Rightarrow y.3+3=y.4-12\)
\(\Rightarrow y.3-y.4=-12-3\)
\(\Rightarrow-1y=-15\)
\(\Rightarrow y=\left(-15\right):\left(-1\right)\)
\(\Rightarrow y=15\)
Vì x = y + 5
\(\Rightarrow x=15+4\)
\(\Rightarrow x=19\)
Vậy x = 19 , y = 15
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=4.\left(-9\right)\)
\(\Rightarrow-x=-9;x=4\)
\(\Rightarrow x=9;x=4\)
\(\frac{-x}{4}=\frac{-9}{x}\)
\(\Rightarrow\left(-x\right).x=\left(-9\right).4\)
\(\Rightarrow\left(-x\right)^2=-36\)
\(\Rightarrow\left(-x\right)^2=-6^2\)
\(\Rightarrow-x=-6\)
\(\Rightarrow x\in\left\{6;-6\right\}\)
Bài 1:Tìm x ,biết:
a.\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
b.\(\frac{1}{x}=\frac{y}{2}-\frac{1}{3}\)
Bài 2:TÌm n\(\in\)N để phân số:B=\(\frac{10n-3}{4n-10}\)đạt GTLN.Tìm GTLN đó
a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}\Rightarrow y=2\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}=\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)
\(\Rightarrow2x-27=1\)
\(\Rightarrow2x=28\Rightarrow x=14\)
vậy x = 14
a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{9.2}\)
\(\Rightarrow9y=9.2\Rightarrow y=2\)
thay y = 2 vào ta có :
\(\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)
\(\Rightarrow2x-27=1\Rightarrow2x=28\Rightarrow x=14\)
b, \(\frac{1}{x}=\frac{y}{2}-\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{3y}{6}-\frac{2}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{3y-2}{6}\)
\(\Rightarrow x=6\)
2. \(B=\frac{10n-3}{4n-10}=\frac{\frac{5}{2}.\left(4n-10\right)+22}{4n-10}=\frac{5}{2}+\frac{22}{4n-10}\)
để \(B\) có giá trị lớn nhất thì \(\frac{22}{4n-10}\) là số dương lớn nhất
=> 4n - 10 là số dương nhỏ nhất ( n thuộc N )
\(\Rightarrow4n-10=2\Rightarrow4n=12\Rightarrow n=3\)
ta có :
\(B=\frac{10n-3}{4n-10}=\frac{30-3}{12-10}=\frac{27}{2}\)
Vậy để \(B\) có giá trị lớn nhất thì \(n=3\)
giá trị lớn nhất của \(B=\frac{27}{2}\)
Tìm x,y thuộc N,biết:
\(\frac{x}{9}\)- \(\frac{3}{y}\) = \(\frac{1}{18}\)
Bài 1:Tìm x, y thuộc N* biết \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)
1)tìm x thuộc z ,BIẾT:
a) \(\frac{x}{-7}\)=\(\frac{5}{-35}\)
b) \(\frac{x-1}{9}\)=\(\frac{9}{-x}\)
c) \(\frac{-x}{4}\)=\(\frac{9}{-x}\)
d) \(\frac{x}{4}\)=\(\frac{18}{x+1}\)
2)tìm x,y thuộc Z ,biết:
a)\(\frac{x}{7}\)=\(\frac{9}{y}\)và x >y
b)\(\frac{-2}{x}\)=\(\frac{y}{5}\)và x<0<y
3)cho A = \(\frac{3n-5}{n+4}\)
tìm n thuộc Z để A có giá trị nguyên
giúp mình với các bạn , mình sẽ tick cho nhé và sẽ tặng bạn quà
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
sao trả lời có một câu mấy dậy bạn giúp mình với
Bài 1. Tìm x,y thuộc Z biết
a)\(\frac{x}{-3}=\frac{9}{y}\)và x>y
b)\(\frac{3x-2}{4y-5}=\frac{-7}{5}\)và x+y=5
c)\(\frac{x}{10}=\frac{-2}{x+1}\)
\(\frac{x}{-3}=\frac{9}{y}\Leftrightarrow xy=-27\)
Mà \(-27=-3\cdot9=-1\cdot27=-9\cdot3=-27\cdot1\)
mặt khác x>ynên ta có các cặp số (x;y)={(9;-3),(27;-1),(1;-27),(3;-9)}
\(\frac{3x-2}{4y-5}=-\frac{7}{5}\)
\(\Leftrightarrow\frac{3x-2}{4\left(5-x\right)-5}=-\frac{7}{5}\)
\(\Leftrightarrow\frac{3x-2}{15-4x}=-\frac{7}{5}\)\(\left(x\ne\frac{15}{4}\right)\)
\(\Leftrightarrow x=\frac{95}{13}\Rightarrow y=-\frac{30}{13}\)
Loại vì x,y phải là số nguyên
Bài 1: tìm cặp số \(\left(x,y\right)\)thỏa mãn:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
Bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và \(a+b+c\ne0\);\(a=2017\).tính \(b,c\)
Bài 3: a) tìm x,y,z biết \(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
c) tìm x,y biết \(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
d) tìm x,y,z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\left(x,y,z\ne0\right)\)
Bài 1: Tìm x,y,z biết:
a: (x+2).(y-3)=5
b: (x+1).(xy-1)=3
c: \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
d:\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
e: x+y+z=x.y.z (x,y,z thuộc N)
f: 3x2 + 5y2 = 12 (x,y,z thuộc N)
a) TA có:
(x+2)x(y-3)=5 => x+2 và y-3 thuộc Ư(5)= 1,5,-1,-5
Ta có bảng
x+2 | 1 | 5 | -1 | -5 |
y-3 | 5 | 1 | -5 | -1 |
x | -1 | 3 | -3 | -7 |
y | 8 | 4 | -2 | 2 |