Rut gon \(\sqrt{\left(\sqrt{3}-2\right)^2}\)a2
rut gon \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
Rut gon:
\(\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{10}-\sqrt{2}\right).\left(3+\sqrt{5}\right)\)
Mình rút gọn như sau:
\(\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{10}-\sqrt{2}\right).\left(3+\sqrt{5}\right)\)
\(=\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}.\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)
\(=\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right).\left(2\sqrt{10}+2\sqrt{2}\right)\)
\(=10+2\sqrt{5}-2\sqrt{5}-2\)
\(=8\)
(Chúc bạn học giỏi và tíck cho mìk vs nhá!)
Rut gon A= \(\dfrac{\sqrt{1-\sqrt{1-x^2}}.\left\{\sqrt{\left(x+1\right)^3}+\sqrt{\left(1-x\right)^3}\right\}}{2-\sqrt{1-x^2}}\)
\(B=5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\right)^2\)
rut gon b
\(\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right).Rut\:gon\:bieu\:thuc\:nay\)
IQ vô cực mà , bn tự làm đc cái biểu thức dễ ợt này mà
rut gon
A=\(\sqrt{\left(\sqrt{6}-2\sqrt{2}\right)^2}-\sqrt{24-12\sqrt{3}}\)
Ta có: A = \(\sqrt{\left(\sqrt{6}-2\sqrt{2}\right)^2}-\sqrt{24-12\sqrt{3}}\)
= \(\left|\sqrt{6}-2\sqrt{2}\right|\) \(-\sqrt{18-2.6\sqrt{3}+6}\)
= \(2\sqrt{2}-\sqrt{6}-\sqrt{\left(\sqrt{18}-\sqrt{6}\right)^2}\)
= \(2\sqrt{2}-\sqrt{6}-\sqrt{18}+\sqrt{6}\)
= \(2\sqrt{2}-3\sqrt{2}=-\sqrt{2}\)
Rut gon
a)\(\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{xy}\right).\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right).\left(\sqrt{x^3}+x\right)}\)
b) \(\frac{\left(2-\sqrt{x}\right)^2-\left(\sqrt{x}+3\right)}{1+2.\sqrt{x}}\)
Lời giải:
a)
\(=\frac{(\sqrt{x}+1)\sqrt{x}(\sqrt{x}-\sqrt{y}))\sqrt{x}+\sqrt{y})}{(x-y)x(\sqrt{x}+1)}=\frac{(\sqrt{x}+1)\sqrt{x}(x-y)}{(x-y)x\sqrt{x}+1)}=\frac{1}{\sqrt{x}}\)
b)
\(=\frac{(2-\sqrt{x}-\sqrt{x}-3)(2-\sqrt{x}+\sqrt{x}+3)}{1+2\sqrt{x}}=\frac{(-1-2\sqrt{x}).5}{2\sqrt{x}+1}=\frac{-5(2\sqrt{x}+1)}{2\sqrt{x}+1}=-5\)
Rut gon
a)\(\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{xy}\right).\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right).\left(\sqrt{x^3}+x\right)}\)
b) \(\frac{\left(2-\sqrt{x}\right)^2-\left(\sqrt{x}+3\right)}{1+2.\sqrt{x}}\)
\(a,\frac{\left(\sqrt{x}+1\right)\cdot\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\sqrt{x}\left(x+1\right)}\)\(=\frac{\left(\sqrt{x}+1\right)\sqrt{x}\left(x-y\right)}{\left(x-y\right)\sqrt{x} \left(x+1\right)}\)\(=\frac{\sqrt{x}+1}{x+1}\)
\(b,\frac{\left(2-\sqrt{x}\right)^2-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{4+x-4\sqrt{x}-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{1+x-5\sqrt{x}}{1+2\sqrt{x}}\)
b,\(\sqrt{\left(3-\sqrt{3^{ }}\right)^2}\)
a) \(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}=4^2+\left(\sqrt{2}\right)^2=16+2=18\)
b) \(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}=9-3=6\)