Mô tả trạng thái của hai vật dao động ở thời điểm t3 và t4 trong đồ thị Hình 1.14.
Một vật dao động có đồ thị li độ – thời gian được mô tả trong Hình 2.2. Hãy xác định:
a) Biên độ dao động, chu kì, tần số, tần số góc của dao động.
b) Li độ của vật dao động tại các thời điểm t1, t2, t3 ứng với các điểm A, B, C trên đường đồ thị li độ – thời gian.
c) Độ dịch chuyển so với vị trí ban đầu tại thời điểm t1, t2, t3 trên đường đồ thị.
a) Biên độ dao động A=0,2 cm
Chu kì T=0,4 s
Tần số \(f = \frac{1}{T} = \frac{1}{{0,4}} = 2,5Hz\)
Tần số góc của dao động \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,4}} = 5\pi rad/s\)
b) Li độ của vật dao động tại các thời điểm t1, t2, t3 ứng với các điểm A, B, C trên đường đồ thị li độ – thời gian lần lượt là x1=-0,1 cm, x2= -0,2 cm, x3= 0 cm.
c) Vì gốc thời gian trùng với vị trí cân bằng nên li độ cũng chính là độ dịch chuyển từ vị trí cân bằng đến vị trí của vật tại các điểm A, B, C.
Đồ thị biểu diễn mối quan hệ giữa động năng W d và thế năng W t của một vật dao động điều hòa có cơ năng W 0 như hình vẽ.
Ở thời điểm t nào đó, trạng thái năng lượng của dao động có vị trí M trên đồ thị, lúc này vật đang có li độ dao động x = 2 cm. Biết chu kỳ biến thiên của động năng theo thời gian là T d = 0 , 5 s , khi vật có trạng thái năng lượng ở vị trí N trên đồ thị thì vật dao động có tốc độ là
A. 16 π cm / s
B. 8 π cm / s
C. 4 π cm / s
D. 2 π cm / s
Đồ thị biểu diễn mối quan hệ giữa động năng W đ và thế năng W t của một vật dao động điều hòa có cơ năng W 0 như hình vẽ. Ở thời điểm t nào đó, trạng thái năng lượng của dao động có vị trí M trên đồ thị, lúc này vật đang có li độ dao động x = 2 cm. Biết chu kì biến thiên của động năng theo thời gian là T đ = 0,5 s, khi vật có trạng thái năng lượng ở vị trí N trên đồ thị thì vật dao động có tốc độ là
A. 16π cm/s
B. 8π cm/s
C. 4π cm/s
D. 2π cm/s
Đồ thị biểu diễn mỗi quan hệ giữa động năng W d và thế năng W t của một vật dao động điều hòa có cơ năng W 0 như hình vẽ. Ở thời điểm t nào đó, trạng thái năng lượng của dao động có vị trí M trên đồ thị, lúc này vật đang có li độ dao động x = 4 cm. Biết chu kì biến thiên của động năng theo thời gian là T d = 1 s, khi đó vật có trạng thái năng lượng ở vị trí N trên đồ thị thì vật dao động có tốc độ là
A. 8π cm/s
B. 4π cm/s
C. 2π cm/s
D. 16π cm/s
Đồ thị biểu diễn mối quan hệ giữa động năng Wd và thế năng Wt của một vật dao động điều hòa có cơ năng W0 như hình vẽ. Ở thời điểm t nào đó, trạng thái năng lượng của dao động có vị trí M trên đồ thị, lúc này vật đang có li độ dao động x = 2 cm. Biết chu kỳ biến thiên của động năng theo thời gian là Td= 0,5 s , khi vật có trạng thái năng lượng ở vị trí N trên đồ thị thì vật dao động có tốc độ là
A. 16π cm/s.
B. 8π cm/s.
C. 4π cm/s.
D. 2π cm/s.
Một vật dao động điều hoà có đồ thị gia tốc theo thời gian được thể hiện trong Hình 2P.2.
Xác định vị trí, vận tốc và gia tốc của vật tại các thời điểm t1, t2, t3, t4 và t5 tương ứng với các điểm A, B, C, D và E trên đường đô thị a(t)
Vị trí A có gia tốc a1=−ω2.A
Vị trí B có gia tốc a2=0 nên vật ở vị trí cân bằng có vận tốc bằng v=ωA
Vị trí C có gia tốc a3=−ω2.A>0 nên vật ở vị trí biên âm có vận tốc bằng 0
Đồ thị biểu diễn mối quan hệ giữa động năng Wd và thế năng Wt của một vật dao động điều hòa có cơ năng W0 như hình vẽ. Ở thời điểm t nào đó, trạng thái năng lượng của dao động có vị trí M trên đồ thị, lúc này vật đang có li độ dao động x = 2 cm. Biết chu kỳ biến thiên của động năng theo thời gian là Td = 0,5 s , khi vật có trạng thái năng lượng ở vị trí N trên đồ thị thì vật dao động có tốc độ là
A. 16π cm/s.
B. 8π cm/s.
C. 4π cm/s.
D. 2π cm/s.
Giải thích: Đáp án C
+ Chu kì biến thiên của động năng là 0,5 s → T = 1 s → w = 2p rad s
Trạng thái M ứng với
+ Trạng thái N ứng với
Đồ thị toạ độ - thời gian của vật chuyển động thẳng mô tả ở hình bên. Tỉ lệ về tốc độ của vật trong giây đầu và hai giây sau là
A. 1 : 2
B. 1 : 3
C. 3 : 1
D.2 : 1
Đáp án D
Tốc độ của vật trong giây đầu là:
Tốc độ của vật trong hai giây sau là:
Vậy tỉ lệ về tốc độ trong giây đầu và hai giây sau là 2 : 1
Đồ thị li độ - thời gian của một con lắc đơn dao động điều hoà được mô tả trên Hình 1.3.
1. Hãy mô tả dao động điều hoà của con lắc đơn.
2. Xác định biên độ và li độ của con lắc ở các thời điểm t = 0, t = 0,5 s ,t = 2,0 s.
tham khảo
1. Mô tả dao động điều hòa của con lắc đơn:
+ Tại thời điểm ban đầu t = 0, con lắc đơn đang ở vị trí biên dương (x = A = 40 cm) và sẽ dịch chuyển về vị trí cân bằng, con lắc đơn ở vị trí x = 0 khi t = 1 s.
+ Tại thời điểm t = 1 s, con lắc đơn bắt đầu chuyển động về phía biên âm và ở vị trí x = - A = - 40 cm khi t = 2 s.
+ Tại thời điểm t = 2 s, con lắc đang ở vị trí biên âm sẽ dịch chuyển về vị trí cân bằng và ở tại vị trí x = 0 khi t = 3 s.
2. Sử dụng thước kẻ để xác định li độ của con lắc tại các thời điểm.
Cách làm: Từ các thời điểm bài toán yêu cầu, dựng đường thẳng vuông góc với trục thời gian tại vị trí thời điểm đó, đường thẳng cắt đồ thị tại điểm nào thì ta kẻ đường thẳng song song với trục thời gian đi qua điểm cắt đó. Đường thẳng song song này cắt trục Ox tại điểm nào thì đó là li độ cần tìm.
Tại thời điểm t = 0 vật bắt đầu xuất phát nên\(\left\{{}\begin{matrix}A=40cm\\x=40cm\end{matrix}\right.\)
Tại thời điểm t = 0,5 s: \(\left\{{}\begin{matrix}A=40cm\\x=20\sqrt{2}cm\end{matrix}\right.\)
Tại thời điểm t = 2,0 s, con lắc đang ở biên âm\(\left\{{}\begin{matrix}A=40cm\\x=-40cm\end{matrix}\right.\)