Cho tam giác ABC vuông tại A, đường cao AH. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia
Cx⊥ AC. Trên tia Cx lấy điểm D sao cho AB=2CD. Gọi M là trung điểm của BH. Chứng minh rằng AM⊥
MD.
Cho tam giác ABC và gọi M là trung điểm của BC
a) Trên tia đối của tia MA lấy D sao cho AM = MD . Chứng minh rằng AB // CD ; AB = CD
b) Trên nửa mặt phẳng bờ AC chứa điểm B, kẻ tia Cx // AB . Lấy điểm D thuộc tia Cx sao cho AB = CD . Chứng minh rằng M là trung điểm của đoạn thẳng AD
a: Xét tứ giác ABDC có
M là trung điểm của đường chéo AD
M là trung điểm của đường chéo BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD và AB=CD
Cho tam giác ABC và gọi M là trung điểm của BC.
a) Trên tia đối của tia MA lấy D sao cho AM = MD. Chứng minh rằng AB// = CD.
b) Trên nửa mặt phẳng bờ AC chứa điểm B, kẻ tia Cx//AB. Lấy điểm D thuộc tia Cx sao cho AB = CD. Chứng minh rằng M là trung điểm của đoạn thẳng AD
a: Xét tứ giác ABDC có
M là trung điểm của đường chéo AD
M là trung điểm của đường chéo BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD và AB=CD
Cho tam giác ABC và gọi M là trung điểm của BC
a) Trên tia đối của tia MA lấy D sao cho AM = MD . Chứng minh rằng AB // CD ; AB = CD
b) Trên nửa mặt phẳng bờ AC chứa điểm B, kẻ tia Cx // AB . Lấy điểm D thuộc tia Cx sao cho AB = CD . Chứng minh rằng M là trung điểm của đoạn thẳng AD
Đề gì vậy
ngay phân a đã có M là trung điểm AD rồi
giờ câu b lại chứng minh M là trung điểm AD
??? đề viết kiểu gì vậy
LƯU Ý : Phần a và phần b là 2 bài khác nhau , 2 phần ấy không liên quan gì đến nhau cả , mỗi phần là 1 bài làm khác nhau nhé mọi người <33
Cho tam giác ABC có 3 góc nhọn, đường cao AH. Trên nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B, kẻ tia Cx // AB. Trên tia Cx lấy điểm D sao cho CD = AB. Kẻ DK vuông góc BC. Gọi O là trung điểm BC. Chứng minh A, O, D thẳng hàng
Cho tam giác ABC vuông tại A có B ^ = 55 ° . Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia Cx vuông góc với AC. Trên tia Cx lấy điểm D sao cho CD = AB.
a) Tính số đo A C B ^
b) Chứng minh ∆ A B C = ∆ C D A và AD//BC.
c) Kẻ A H ⊥ B C ( H ∈ B C ) và C K ⊥ A D ( K ∈ A D ) . Chứng minh BH = DK.
d) Gọi I là trung điểm của AC. Chứng minh ba điểm H, I, K thẳng hàng và 3 đường thẳng AC, HK, BD cùng gặp nhau ở I.
Cho tam giác ABC, trên nửa mặt phẳng bờ AC chứa điểm B, vẽ tia Ax vuông góc với AC, trên Ax lấy điểm D sao cho AD=AC. Trên nửa mặt phẳng bờ AB chứa điểm C, dựng tia Ay vuông góc với AB, trên Ay lấy điểm E sao cho AE=AB. Gọi AH là chiều cao tam giác ABC, chứng minh rằng AH đi qua trung điểm I của DE.
Lần lượt hạ DM, EN vuông góc AH tại M, N
ta có (góc có cạnh tương ứng vuông góc) (1)
AD =CA (2)
DAM^=ACH^ (góc có cạnh tương ứng vuông góc) (3)
từ (1, 2, 3)=>△ADM=△CAH (g, c, g)
=>DM =AH (4)
c minh tương tự △AEN=△BAH (g, c, g)
=>EN =AH (5)
từ (4, 5) =>DM =EN
mà DM //EN
DMEN là hình bình hành
=>MN đi qua trung điểm I của DE
hay AH đi qua trung điểm I của DE (đpcm)
Cho tam giác ABC nhọn và đường cao AH. Trên nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B, kẻ tia Cx // AB. Trên tia Cx lấy điểm D sao cho CD = AB. Kẻ DK vuông góc BC (K thuộc BC). Gọi O là trung điểm của BC. Chứng mình rằng:
a) AH = DK
b) A, O, D thẳng hàng
c) AC // BD
Cho tam giác ABC nhọn và đường cao AH. Trên nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B, kẻ tia Cx // AB. Trên tia Cx lấy điểm D sao cho CD = AB. Kẻ DK vuông góc BC (K thuộc BC). Gọi O là trung điểm của BC. Chứng mình rằng:
a) AH = DK
b) A, O, D thẳng hàng
c) AC // BD
Cho tam giác ABC vuông tại A có 0 B 55 . Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia Cx vuông góc với AC. Trên tia Cx lấy điểm D sao cho CD = AB a) Tính số đo góc ACB b) Chứng minh ABC CDA và AD // BC c) Kẻ AH BC( H BC) và CK AD ( K AD). Chứng minh BH = DK d) Gọi I là trung điểm của AC. Chứng minh ba điểm H,I,K thẳng hàng và 3 đường thẳng AC,HK,BD cùng gặp nhau ở I