Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
edogawa conan
Xem chi tiết
Hyuuga Neji
5 tháng 1 2016 lúc 16:39

Vì 45=9x5

=>36^36-9^10 chia hết cho 9 (1)(vì 36^36 và 9^10 đều chia hết cho 9 )

36^36 tận cùng là 6 

9^10 tận cùng là 1 (9 lũy thừa m với m chẵn luôn tận ucngf là 1 )

=>36^36 - 9^10 tận cùng là 5 và do đó chia hết cho 5 (2)

Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1);(2) => 36^36 - 9^10 chia hết cho 45

Bùi Tiến Phi
5 tháng 1 2016 lúc 16:35

45=6.9

mà 36^36chia het cho 6

     9^10 chia hết cho 9 

nên 36^36-9^10 chia het cho 45

Ice Wings
5 tháng 1 2016 lúc 16:37

Bùi Tiến Phi giỏi nhể! 45=6.9

jennyfer nguyen
Xem chi tiết
Bạch Hà Băng
Xem chi tiết
An Nguyễn Bá
27 tháng 10 2017 lúc 21:38

Chứng minh rằng:

\(2^{10}+2^{11}+2^{12}\)

\(=2^{10}\left(1+2+2^2\right)\)

\(=2^{10}.7\) \(⋮\) 7

Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7

An Nguyễn Bá
27 tháng 10 2017 lúc 21:51

Chứng minh rằng:

\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)

\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)

\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)

\(=36.3^n+12.3^n\)

\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N

Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N

An Nguyễn Bá
27 tháng 10 2017 lúc 22:00

Chứng minh rằng:

\(81^7-27^9-9^{13}\)

\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{24}\left(3^4-3^3-3^2\right)\)

\(=3^{24}.45\) \(⋮\) 45

Vậy \(81^7-27^9-9^{13}\) chia hết cho 45

Trần Việt Hoàng
Xem chi tiết
nguyen phuong thao
Xem chi tiết
Trung Phan Trọng
19 tháng 10 2018 lúc 19:56

8^8+2^20 
=(2^3)^8+2^20 
=2^(3.8)+2^20 
=2^24+2^20 
=2^20.2^4+2^20 
=2^20.(2^4+1) 
=2^20.17 chia hết cho 17  

k mk nha thanks bạn

gia bim
Xem chi tiết
pokemon pikachu
26 tháng 12 2017 lúc 17:06

đáp án https://goo.gl/BjYiDy

Luger Girl
Xem chi tiết
Ngô Tấn Đạt
25 tháng 12 2017 lúc 19:30

Đặt \(A=36^{36}-9^{10}\)

\(\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\Rightarrow A=36^{36}-9^{10}⋮9\)

\(36\equiv1\left(mod5\right)\\ \Rightarrow36^{36}\equiv1\left(mod5\right)\\ 9\equiv-1\left(mod5\right)\\ \Rightarrow9^{10}\equiv1\left(mod5\right)\\ \Rightarrow A=36^{36}-9^{10}\equiv0\left(mod5\right)\\ \Rightarrow A⋮5\)

(5;9)=1 => A chia hết 45

Trần Nghiên Hy
Xem chi tiết
Bùi Hà Chi
16 tháng 7 2016 lúc 8:57

Ta có:

\(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)=3^{2014}.11\) chia hết cho 11

Vậy 32016+32015-32014 chia hết cho 11 (đpcm)

--------------------------

Ta có:

\(36^{36}-9^{10}=4^{36}.9^{36}-9^{10}=9^{10}\left(4^{36}.9^{26}-1\right)=\) chia hết cho 9 (1)\(36^{36}-9^{10}=\left(...6\right)-\left(...1\right)=\left(...5\right)\) chia hết cho 5 (2) 

Vì 3636 có tận cùng là 6, 910 có tận cùng là 1 => 3636-910 có tận cùng là 5 [ phần này mình chỉ nói thêm thôi nhé ]

Từ (1),(2) và (5;9)=1 =>3636-910 chia hết cho 5.9=45 (đpcm)

Phan Lê Minh Tâm
16 tháng 7 2016 lúc 9:46

9. \(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)\)

                                      \(=3^{2014}.11⋮11\)

Vậy \(3^{2016}+3^{2015}-3^{2014}\) chia hết cho 11

Kỳ Tỉ
Xem chi tiết
Khải Nhi
16 tháng 7 2016 lúc 8:57

Mình chỉ làm được cái thứ 2 thôi..thông cảm nhé:

 36^36 - 9^10 chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9) 
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6) 
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1) 
---> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2) 
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) ---> 36^36 - 9^10 chia hết cho 45.

van anh ta
16 tháng 7 2016 lúc 9:02

               9)  Ta có :

                  32016 + 32015 - 32014 = 32014 . (32 + 3 - 1) = 32014 . (9 + 3 - 1) = 32014 . 11 chia hết cho 11 (ĐPCM)

             Tớ chỉ làm đc phần 9 thui ^_^