2x+3/5x+2=4x+5/10x+2.Tìm x
Tìm x biết :2x+3/5x+2 = 4x+5/10x+2
2x+3/5x+2 = 4x+5/10x+2
<=> (2x+3)(10x+2)=(5x+2)(4x+5)
<=>2x(10x+2)+3(10x+2)= 5x(4x+5)+2(4x+5)
<=> 20x^2+4x+20x+6 = 20x^2+25x+9x+10
<=> 20x^2+4x+20x+6 - (20x^2+25x+9x+10)=0 => 20x^2+24x+6-(20x^2+34x+10)=0
<=> -10x-4=0
<=>-10x=4
<=> x= -4/10
2x+3/5x+2=4x+5/10x+2
=> (2x+3)(10x+2)=(5x+2)(4x+5)
=> 20x^2+4x+30x+6=10x^2+25x+8x+10 ( Vì cả hai vế đều có 10x^2 nên ta xóa đi )
=> 34x+6=33x+10
=> 34x-33x=-6+10
=> x=4
Tìm x biết: 2x+3/5x+2=4x+5/10x+2
Tìm x biết :2x+3/5x+2 = 4x+5/10x+2
tìm x : biết
(2x+3)/(5x+2)=(4x+5)/(10x+2)
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
=> (2x + 3)(10x + 2) = (5x + 2)(4x + 5)
=> 20x2 + 4x + 30x + 6 = 20x2 + 25x + 8x + 10
=> 34x + 6 = 33x + 10 (bớt 2 vế đi 20x2)
=> x = 4
tìm x biết:
2x+3/5x+2= 4x+5/10x+2
1. TÌm x:
a)4x^2-2x+3-4x.(x-5)=7x-3
b)-3x.(x-5)+5.(x-1)+3x^2=4x
c)7x.(x-2)-5.(x-1)=21x^2-14x^2+3
d)3.(5x-1)-x.(x-2)+x^2-13x=7
e) 1/5x.(10x-15)-2x.(x-5)=12
a) 4x2 - 2x + 3 - 4x.(x - 5) = 7x - 3
--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3
--> 11x = -6
--> x = \(\frac{-6}{11}\)
b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x
--> -3x2 + 15x + 5x - 5 + 3x2 = 4x
--> -3x2 + 15x + 5x + 3x2 - 4x = 5
--> 16x = 5
--> x = \(\frac{5}{16}\)
c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3
--> 7x2 - 14x - 5x + 5 = 7x2 + 3
--> 7x2 - 14x - 5x - 7x2 = -5 + 3
--> -19x = -2
--> x = \(\frac{2}{19}\)
d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7
--> 15x - 3 - x2 + 2x + x2 - 13x = 7
--> 15x - x2 + 2x + x2 - 13x = 3 + 7
--> 4x = 10
--> x = \(\frac{5}{2}\)
e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12
--> 2x2 - 3x - 2x2 + 10x = 12
--> 7x = 12
--> x = \(\frac{12}{7}\)
~ Học tốt ~
1. TÌm x:
a)4x^2-2x+3-4x.(x-5)=7x-3
b)-3x.(x-5)+5.(x-1)+3x^2=4x
c)7x.(x-2)-5.(x-1)=21x^2-14x^2+3
d)3.(5x-1)-x.(x-2)+x^2-13x=7
e) 1/5x.(10x-15)-2x.(x-5)=12
a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3
=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
=> 18x + 3 = 7x - 3
=> 18x - 7x = -3 - 3
=> 11x = -6
=> x = -6/11
b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x
=> -3x2 + 15x + 5x - 5 + 3x2 = 4x
=> 20x - 5 = 4x
=> 20x - 4x = 5
=> 16x = 5
=> x = 5/16
\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)
\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)
\(\Leftrightarrow7x^2-7x^2-19x=3-5\)
\(\Leftrightarrow-19x=-2\)
\(\Leftrightarrow x=\frac{2}{19}\)
a) 4x2 - 2x + 3 - 4x.(x - 5) = 7x - 3
<=> 18x + 3 = 7x - 3
<=> 18x = 7x - 3 - 3
<=> 18x = 7x - 6
<=> 18x - 7x = -6
<=> 11x = -6
<=> x = -6/11
=> x = -6/11
b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x
<=> 20x - 5 = 4x
<=> 20x = 4x + 5
<=> 20x - 4x = 5
<=> 16x = 5
<=> x = 5/16
=> x = 5/16
c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3
<=> 7x.(x - 2) - 5.(x - 1) = 7x2 + 3
<=> 7x2 - 19x + 5 = 7x2 + 3
<=> 7x2 - 19x = 7x2 + 3 - 5
<=> 7x2 - 19x = 7x2 - 2
<=> 7x2 - 19x - 7x2 = -2
<=> -19x = -2
<=> x = 2/19
=> x = 2/19
d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7
<=> 4x - 3 = 7
<=> 4x = 7 + 3
<=> 4x = 10
<=> x = 10/4
=> x = 5/2
e) 1/5x.(10x - 15) - 2x.(x - 5) = 12
<=> x(2x - 3) - 2x(x - 5) = 12
<=> 7x = 12
<=> x = 12/7
=> x = 12/7
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
tìm x: a)x^4-2x^3+5x^2-10x=0
b)(3x+5)^2=(2x-2)^2
. c)x^3–2x^2+x=0
. d)x^2(x-1)-4x^2+8x-4=0
\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)
\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)
Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)
b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy ...
d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: Ta có: \(x^4-2x^3+5x^2-10x=0\)
\(\Leftrightarrow x\left(x^3-2x^2+5x-10\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b:Ta có: \(\left(3x+5\right)^2=\left(2x-2\right)^2\)
\(\Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(3x+5-2x+2\right)\left(3x+5+2x-2\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)