cho biểu thức A= 3n+2 /n+1 (nϵZ , n≠ -1). tìm giá trị của n để A có giá trị là số nguyên
cho biểu thức : A= 3n + 2 / n + 1 ( n thuộc Z, n # -1 )
a, tìm giá trị của n để A có giá trị là số nguyên
b. chứng minh A là phân số tối giản với mọi giá trị của n
tìm các giá trị nguyên của n để giá trị của biểu thức \(A=\dfrac{2n^2+3n+3}{2n-1}\) có giá trị là số nguyên
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
cho A=3n-5:n+4. Tìm nϵZ để A có giá trị nguyên
Lời giải:
Để $A$ nguyên thì:
$3n-5\vdots n+4$
$\Rightarrow 3(n+4)-17\vdots n+4$
$\Rightarrow 17\vdots n+4$
$\Rightarrow n+4\in \left\{\pm 1; \pm 17\right\}$
$\Rightarrow n\in \left\{-3; -5; 13; -21\right\}$
Tìm giá ttrị nguyên của n:
a) để giá trị cuả biểu thức 3n^3 + 10n^2 - 5 chia hết cho giấ trị của biểu thưc 3n+1
b) để giá trị cuẩ biểu thức 10n^2 + n - 1- chiaa hêts cho giá trị của biểu thức n- 1
Tìm giá trị nguyên của n
a/ Để giá trị của biểu thức 3n3 + 10n2 – 5 chia hết cho giá trị của biểu thức 3n+1.
b/ Để giá trị của biểu thức 10n2 + n – 10 chia hết cho giá trị của biểu thức n – 1 .
a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)
Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4
b) Cho n-1=0 => n=1
Sau đó thay vào biểu thức 10n2+n -10 sẽ tìm ra n=1
Cho mình nha!!! <3
Câu a,Cho biểu thức A= -5/n-2
1, tìm các số tự nhiên n để biểu thức A là phân số.
2, tìm các số tự nhiên n để biểu thức A là số nguyên
Câu b,Tìm giá trị nguyên của n để phân số A=3n+2/n-1có giá trị là số nguyên
Câu c, tìm các giá trị nguyên n để phân số A=4n+5/2n-1 có giá trị là số nguyên
Mng giải giúp mik vs ạ
cho phân số a = n+1/n-3 (nϵz; n≠ 3)
a) Tìm n để A có giá trị nguyên
b) tìm n để A là phân số tối giản
Tìm giá trị nguyên của n
a/ 7 chia hết cho n+2
b/ n+1 chia hết cho n-3
c/ Để giá trị của biểu thức \(3n^3+10n^2-5\) chia hết cho giá trị của biểu thức 3n+1
d/ Để giá trị của biểu thức \(10n^2+n-10\) chia hết cho giá trị của biểu thức n-1
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
Cho biểu thức A=\(\frac{3n+1}{n+1}\)(n thuộc Z, n khác -1)
a) Tìm giá trị của n để A có giá trị là số nguyên
b) Chứng minh rằnga là phân số tối giải với mọi giá trị của n
a, với n thuộc Z
Để A là một số nguyên thì 3n + 1 chia hết cho n+1
mà n + 1 chia hết n +1
=> (3n+1) - 3. (n+1) chia hết cho n+1
<=> (3n+1)-( 3n +3) chia hết cho n+1
<=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)= {+-1; +-4; +-2}
nếu ............
Tìm các giá trị nguyên của n thỏa mãn để biểu thức\(A=\frac{3n+4}{n-1}\)có giá trị là số nguyên.
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Chúc em học tốt^^
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Để A nguyên thì 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n - 1
=> 3.(n - 1) + 7 chia hết cho n - 1
Do 3.(n - 1) chia hết cho n - 1 => 7 chia hết cho n - 1
=> n - 1 thuộc {1 ; -1; 7 ; -7}
=> n thuộc {2 ; 0 ; 8 ; -6}