Những câu hỏi liên quan
Trịnh Hải Yến
Xem chi tiết
Thành
Xem chi tiết
Tâm Cao
Xem chi tiết
:>>>
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2021 lúc 7:49

\(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow ab+bc+ca=2020\)

BĐT trở thành:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)

\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)

\(\Leftrightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020^2}{abc}\)

Ta có: \(\sqrt{2020+a^2}=\sqrt{ab+bc+ca+a^2}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{1}{2}\left(2a+b+c\right)\)

Tương tự:...

\(\Rightarrow\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le2\left(a+b+c\right)\)

\(\Rightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le3\left(a+b+c\right)\)

Nên ta chỉ cần chứng minh:

\(3\left(a+b+c\right)\le\dfrac{2020^2}{abc}=\dfrac{\left(ab+bc+ca\right)^2}{abc}\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (hiển nhiên đúng)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)

Bình luận (0)
vo thi minh nguyet
Xem chi tiết
Nguyễn Thị Tuyết Hạnh
Xem chi tiết
Mr Lazy
3 tháng 8 2016 lúc 12:15

Áp dụng bđt \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

Dấu bằng xảy ra khi \(ad=bc\)

\(x\sqrt{1-y^2}+\sqrt{1-x^2}.y\le\left|x\sqrt{1-y^2}+\sqrt{1-x^2}.y\right|\le\sqrt{x^2+1-x^2}.\sqrt{1-y^2+y^2}=1\)

Dấu bằng xảy ra khi \(xy=\sqrt{1-x^2}.\sqrt{1-y^2}\Leftrightarrow x^2y^2=x^2y^2+1-\left(x^2+y^2\right)\)

\(\Leftrightarrow x^2+y^2=1\)

Bình luận (0)
Thăng Vũ
Xem chi tiết
Thăng Vũ
29 tháng 10 2018 lúc 21:10

biết làm rồi

Bình luận (0)
mo chi mo ni
30 tháng 10 2018 lúc 19:57

VẬy bạn giải ra cho mọi người xem được ko?

Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!

Bình luận (0)
White Boy
Xem chi tiết