Mấy bn cho mn hỏi
A=n(3n-1)-3n(n-2)⋮5,∀n
Giúp mình với ak
Chứng minh rằng n(3n^2 + 2022) chia hết cho 9 với mọi số nguyên n
giúp mình với ạ
A=3n(n^2+674)
TH1: n=3k
=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9
TH2: n=3k+1
=>A=3(3k+1)(9k^2+6k+1+674)
=3(3k+1)(9k^2+6k+675)
=9(3k+1)(3k^2+2k+225) chia hết cho 9
TH3: n=3k+2
=>A=3(3k+2)(9k^2+12k+4+674)
=3(3k+2)(9k^2+12k+678)
=9(3k+2)(3k^2+4k+226) chia hết cho 9
Với mọi số tự nhiên N thì B = 3n+3 + 2n+3 + 3n+1 + 2n+2 chia hết cho 6 ?
Mong mn giúp mình :<
B = 3ⁿ⁺³ + 2ⁿ⁺³ + 3ⁿ⁺¹ + 2ⁿ⁺²
= (3ⁿ⁺³ + 3ⁿ⁺¹) + (2ⁿ⁺³ + 2ⁿ⁺²)
= 3ⁿ⁺¹.(3² + 1) + 2(2ⁿ⁺² + 2ⁿ⁺¹)
= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺² + 2ⁿ⁺¹)
= 2.3ⁿ⁺¹.5 + 2.(2ⁿ⁺² + 2ⁿ⁺¹)
= 2.(3ⁿ⁺¹.6 + 2ⁿ⁺² + 2ⁿ⁺¹) ⋮ 2 (1)
B = (3ⁿ⁺³ + 3ⁿ⁺¹) + (2ⁿ⁺³ + 2ⁿ⁺²)
= 3.(3ⁿ⁺² + 3ⁿ) + 2ⁿ⁺².(2 + 1)
= 3.(3ⁿ⁺² + 3ⁿ) + 2ⁿ⁺².3
= 3.(3ⁿ⁺² + 3ⁿ + 2ⁿ⁺²) ⋮ 3 (2)
Từ (1) và (2) ⇒ B ⋮ 6
a; 2n +5 : n+1
b, 3n+25 : n+7
mấy bn giúp mình nhé thơi gian có hạn
a) \(2n+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+3⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Rightarrow2\left(n+1\right)⋮n+1\)
\(3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
Th1: n + 1 = 1 Th2: n + 1 = 3
n = 1 - 1 n = 2
n = 0
Vậy \(n\in\left\{0;2\right\}\)
b) \(3n+25⋮n+7\)
\(\Rightarrow3\left(n+7\right)+4⋮n+7\)
Mà \(n+7⋮n+7\)
\(\Rightarrow3\left(n+7\right)⋮n+7\)
\(4⋮n+7\)
\(n+7\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Vì n là số tự nhiên (theo đề bài của bạn có hay k thì mk k rõ, bn k ghi mà!!!) nên n + 7\(\ge7\)
Vậy k có giá trị thoả mãn cho n với n là số tự nhiên ( Nếu n thuộc Z thì bn tự tính nhen
Trên onlinemath cũng có mấy bài tương tự đó bn
2n+2:n+1 đc=>3:n+1 đc
=>n=Ư(3)=1;3
b) ko bik làm mik cũng học lớp 6
Bài 1: Chứng tỏ các phân số sau tối giản:
a) A = n+3 / 2n+7 tối giản với n ∈ N
b) B = 5n+7 / 2n+3 tối giản với n ∈ N
c) C = 2n+1 / 3n+1 tối giản với n ∈ N
Giúp với ạ cần gấp
a: Gọi d=ƯCLN(2n+7;n+3)
=>2n+7-2n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số tối giản
b: Gọi d=ƯCLN(5n+7;2n+3)
=>10n+14-10n-15 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Tìm số tự nhiên n sao cho : \(n^3\)+3n+1 chia hết cho n+1
(mn giúp mình nhanh với ạ, mình đang cần gấp)
Lời giải:
$n^3+3n+1\vdots n+1$
$\Rightarrow (n^3+1)+3n\vdots n+1$
$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$
$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn)
$\Rightarrow n\in \left\{0; 2\right\}$
1) Tìm số tự nhiên n sao cho:
a) 38 - 3n chia hết cho n
b) n + 5 chia hết cho n + 1
c) 3n + 4 chia hết cho n - 1
d) 3n + 2 chia hết cho n - 1
CÁC BẠN ƠI GIÚP MÌNH VỚI !!!!
a)38-3n chia hết cho n
=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}
b)n+5 chia hết cho n+1
=>n+1+4 chia hết cho n+1
=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}
=>n thuộc{0;1;3}
c)3n+4 chia hết cho n-1
3(n-1)+7chia hết cho n-1
=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}
=> n thuộc{2;8}
d)3n+2 chia hết cho n-1
3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}
=>n thuộc{2;6}
có j ko hiểu hỏi mk
tìm số tự nhiên n khác 1 để 3n+5 chia hết cho n
(giúp mình với các bn ơi)
1.Tìm số tự nhiên n sao cho các phân số sau có giá trị là số tự nhiên
a)n+10/n-4 ; b)21n+3/3n+2 ; c)63/3n+1 ; d)3n+9/2n-2
e)3n+4/n-1 ; f)6n-3/3n+1 ; g)3n+9/n-4 ; h)3n-5/n+4 ; ê)4n+1/6n+1
( các bn giải giúp mk với, bn nào giải đúng nhanh và giải hết tất cả bài trên mk sẽ tik cho)
Chứng minh các đẳng thức sau (với n∈N∗n∈N∗)
a) 2+5+8+...+(3n−1)=n(3n+1)22+5+8+...+(3n−1)=n(3n+1)2;
b) 3+9+27+...+3n=12(3n+1−3)3+9+27+...+3n=12(3n+1−3).
tham khảo:
\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)