Thu gọn đa thức
C= x2-y2+z2-x2+y2-z2+x2+y2+z2
Thu gọn đa thức sau:
Q = x2 + y2 + z2 + x2 – y2 + z2 + x2 + y2 – z2
Q = x2 + y2 + z2 + x2 – y2 + z2 + x2 + y2 – z2
Q = (x2 + x2 + x2) + (y2 – y2 + y2) + (z2 – z2 + z2)
Q = 3x2 + y2 + z2
(Có bạn nào có thắc mắc về bậc của đa thức này không? Bậc 2 nhé!!!)
Tính tổng của hai đa thức sau: x2 + y2 + z2 và x2 – y2 + z2
(x2 + y2 + z2) + (x2 – y2 + z2)
= x2 + y2 + z2 + x2 – y2 + z2
= (x2 + x2) + (y2 – y2) + (z2 + z2)
= 2x2 + 2z2
phân tích đa thức thành nhân tử
[ (x2 + y2)(z2 + t2) + 4xyzt ]2 - [ 2xy(z2 + t2) + 2zt(x2 + y2) ]
phân tích đa thức sau thành nhân tử
e,x(y2-z2)+y(z2-x2)+(z2-y2)....help
Cho x+y+z=0. Hãy tính
S= 1/y2+z2-x2+1/x2+z2-y2+1/y2+x2-z2
GIÚP MÌNH VỚI!
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
Phân tích các đa thức sau thành nhân tử: x 2 y + x y 2 + x 2 z + x z 2 + y 2 z + y z 2 + 3xyz.
x 2 y + x y 2 + x 2 z + x z 2 + y 2 z + y z 2 + 3xyz.
= ( x 2 y + x 2 z + xyz) + (x y 2 + y 2 z + xyz) + (x z 2 + y z 2 + xyz)
= x(xy + xz + yz) + y(xy + yz + xz) + z(xz + yz + xy)
= (x + y + z)(xy + xz + yz).
\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xz^2+yz^2+xyz\right)+\left(xy^2+y^2z+xyz\right)\)
\(=x\left(xy+xz+yz\right)+z\left(xz+yz+xy\right)+y\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)
tìm x,y,z biết rằng x2/2+y2/3+z2/4 = (x2+y2+z2)/5
cho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/ycho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/y