\(x+4y\)-5\(z\) =?
Đề chua đủ em nhé
3\(x\) = 4y = 5z ⇒ \(x+4y-5z=x+3x-3x\) = 20 ⇒ \(x\) = 20
y = \(\dfrac{3}{4}\)\(x\) = 20 \(\times\) \(\dfrac{3}{4}\) = 15
z = \(\dfrac{3}{5}\)\(x\) = 20 \(\times\) \(\dfrac{3}{5}\) = 12
Vậy \(\left\{{}\begin{matrix}x=20\\y=15\\z=12\end{matrix}\right.\)
Ta có : `3x=4y=5z=>(3x)/60=(4y)/60=(5z)/60=>x/20 =y/15=z/12`
`-> x/20=y/15=z/12=>x/20=(4y)/60=(5z)/60` và `x+4y-5z=?`
ADTc dãy tỉ số bằng nhau ta có :
`x/20=(4y)/60=(5z)/60=(x+4y-5z)/(20+60-60)= ?/20`
`=> x/20=?/20=>?/20 . 20`
`=> y/15=?/20=>?/20 . 15`
`=>z/12=?/20=>z=?/20. 12`
Tìm x,y,z biết 3x=4y=5z-3x-4y và 2x+y=z-38
giúp mình với
Bạn xem lại đề giúp mình nhé
Tìm x,y,z biết :3x=4y=5z-3x-4y và 2x+y=z-38
Giúp với
Mình đã trả lời câu hỏi này cho bạn có nick là doraemon . Bạn có thể lên xem
tìm x,y,z
a, x-1/2= y+3/4= z-5/6 và 5z- 3x- 4y= 50
b, 2x= 3y; 5y= 7z và 3x +5z- 7y=30
Giúp mình đi nhé, nãy gửi lỗi
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17
b)2x= 3y; 5y= 7z và 3x +5z- 7y=30
=>x/3=y/2;y/7=z/5
=>x/21=y/14=z/10
=>3x+5z-7y/63+50-98
=>30/15=2
=>x=42
y=28
z=20
nhớ tick nhé:))
Chứng tỏ rằng không tồn tại các số nguyên x , y , z sao cho :
| x - 2y | + | 4y - 5z | + | z - 3x | = 2019
Các bạn giúp mình mới nhé !
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2019+2y-4z-2x\)
Xét \(a< 0\) ta có:\(\left|a\right|+a=-a+a=0⋮2\)
Xét \(a=0\) ta có:\(\left|a\right|+a=0⋮2\)
Xét \(a>0\) ta có:\(\left|a\right|+a=a+a=2a⋮2\)
Vậy với mọi a thì \(\left|a\right|+a\) luôn chia hết cho 2
Áp dụng vào bài ta có:\(\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x⋮2\)
mà \(2019+2y-4z-2x\) không chia hết cho 2,vô lí
Vậy không tồn tại số nguyên x,y,z thỏa mãn
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2019+x-2y+4y-5z\)\(+z-3x\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2019\)\(+\left(x-3x\right)+\left(4y-2y\right)+\left(z-5z\right)\)
\(\Rightarrow\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019+\left(-2x\right)+\left(2y\right)+\left(-4z\right)\)
+)Ta có:
+)Xét \(x< 0\Rightarrow\left|x\right|+x=\left(-x\right)+x=0⋮2\left(1\right)\)
+)Xét \(x=0\Rightarrow\left|x\right|+x=x+x=0+0=0⋮2\left(2\right)\)
+)Xét \(x>0\Rightarrow\left|x\right|+x=x+x=2x⋮2\left(3\right)\)
+)Từ (1);(2) và (3)
\(\Rightarrow\left|x\right|+x⋮2;\forall x\)
+)Ta lại có:\(\left(-2x\right)⋮2;2y⋮2;\left(-4z\right)⋮2\)
\(\Rightarrow\left(-2x\right)+2y+\left(-4z\right)⋮2\)
+)Ta có:\(\left|x\right|+x⋮2;\forall x\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x⋮2\)
\(\Rightarrow2019+\left(-2x\right)+2y+\left(-4z\right)⋮2\)
Mà \(2019+\left(-2x\right)+2y+\left(-4z\right)⋮̸2\)(vì \(2019⋮̸2;\left(-2x\right)+2y+\left(-4z\right)⋮2\))
Vậy không tồn tại các số x;y;z thỏa mãn \(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019\left(ĐPCM\right)\)
Chúc bn học tốt
tìm x, y, z biết :
a) 3x = 4y -2x = 7z - 4y và x + y - 2z = 10
b) 3x = 4y = 5z - 3x - 4y và 2x + y = z - 38
Tìm x,y,z biết:\(\dfrac{x-1}{2}\)=\(\dfrac{y+3}{4}\)=\(\dfrac{z-5}{6}\) và 5z-3x-4y=50.
giúp mình với mọi người.
3x=4y=5z-3x-4y và 2x+y=z-38.Tìm x,y,z