1/2014 - 1/2014.2013 - 1/2013.2012 - ... - 1/3.2 - 1/2.1
1/2014 - 1/2014.2013 - 1/2013.2012 - ... - 1/3.2 - 1/2.1
\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+\dfrac{1}{2}-\dfrac{1}{3}+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{1006}{1007}\)
1. Tính
\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+....+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{2012}{2014}=-\dfrac{1006}{1007}\)
\(\dfrac{1}{2014}-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-...-\dfrac{1}{2013\cdot2014}\)
\(=\dfrac{1}{2014}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\right)\)
\(=\dfrac{1}{2014}-1+\dfrac{1}{2014}=-\dfrac{1006}{1007}\)
tính hợp lí nếu có thể
1/2014-1/2014.2013-1/2013.2012-...-1/3.2-1/2.1
\(=\frac{1}{2014}-\frac{2014-2013}{2014.2013}-\frac{2013-2012}{2013.2012}-...-\frac{3-2}{3.2}-\frac{2-1}{2.1}\)
\(=\frac{1}{2014}-\left(\frac{2014}{2014.2013}-\frac{2013}{2014.2013}\right)-...-\left(\frac{3}{3.2}-\frac{2}{3.2}\right)-\left(\frac{2}{2.1}-\frac{1}{2.1}\right)\)
\(=\frac{1}{2014}+\left(\frac{1}{2014}-\frac{1}{2013}\right)+...+\left(\frac{1}{3}-\frac{1}{2}\right)+\left(\frac{1}{2}-1\right)\)
\(=\frac{1}{1007}-1\)
\(=\frac{-1006}{1007}\)
TÍNH HỢP LÍ( NẾU CÓ THỂ)
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}+\frac{1}{2013.2014}\right)+\frac{1}{2014}\)
\(=\frac{1}{2014}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=\frac{1}{2014}-1+\frac{1}{2014}=\frac{1}{1007}-1=\frac{-1006}{1007}\)
....
1/2015.2014-1/2014.2013-1/2013.2012-........-1/3.2-1/2.1
Bài 1 Rút gọn
a) \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-.....-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
Ta có : \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-......-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2013.2014}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=1-\left(1-\frac{1}{2014}\right)\)
\(=1-1+\frac{1}{2014}\)
\(=\frac{1}{2014}\)
\(a,1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=1-\left(1-\frac{1}{2014}\right)\)
\(=1-1+\frac{1}{2014}\)
\(=\frac{1}{2014}\)
D=1/2015.2014-1/2014.2013-......-1/3.2-1/2.1
-1/2016.2015-1/2015.2014-1/2013.2012-...-1/3.2-1/2.1
=\(-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2015}+\frac{1}{2014}-...-\frac{1}{2}+1\)
=\(-\frac{1}{2016}+1=\frac{2015}{2016}\)
Ta có :\(\frac{-1}{2016.2015}-\frac{1}{2015.2014}-\frac{1}{2014.2013}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
= \(-\left(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
= \(-\left(\frac{1}{2016}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2014}+\frac{1}{2014}-\frac{1}{2013}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-\frac{1}{1}\right)\)
= \(-\left(\frac{1}{2016}-1\right)\)
= \(-\left(-\frac{2015}{2016}\right)\)
= \(-\frac{2015}{2016}\)
Mk làm kĩ lắm rồi. ko tích nữa mk cũng chịu bạn luôn @@
tính y=1/2013.2012-1/2012.2011-...-1/3.2-1/2.1