Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
leonardor
Xem chi tiết
Mai Anh
6 tháng 12 2017 lúc 12:46

Ta có:

A=|x−2016|+2017|x−2016|+2018 =|x−2016|+2018−1|x−2016|+2018 =1−1|x−2016|+2018 

Vì |x−2016|≥0⇒|x−2016|+2018≥2018⇒1|x−2016|+2018 ≤12018 

=>A=1−1|x−2016|+2018 ≥20172018 

=>Amin=20172018 <=>|x-2016|=0<=>x-2016=0<=>x=2016

Lương Tuấn Anh
29 tháng 7 2019 lúc 18:42

A=|x-2017|+|x+2018|

Nguyễn Quang Hoàng
Xem chi tiết
Nguyễn Xuân Toàn
7 tháng 11 2017 lúc 12:42

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy !!!

Le THuy Hien
1 tháng 5 2018 lúc 9:46

bạn đang đưa linh tinh đó thôi

NGUYỄN CẨM TÚ
Xem chi tiết
Nguyễn Huy Tú
6 tháng 6 2017 lúc 10:00

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)

Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất

Ta có: \(\left|x-2016\right|\ge0\)

\(\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)

Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)

Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016

Kirigawa Kazuto
6 tháng 6 2017 lúc 9:57

Ta có :

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)

\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)

<=> |x - 2016| = 0

<=> x = 2016

Nguyễn Trịnh Hồng Hương
Xem chi tiết
Nguyễn Văn Hiếu
10 tháng 3 2016 lúc 21:13

\(\frac{2017}{2018}\)

Nguyễn Thị Hồng Thanh
10 tháng 3 2016 lúc 21:11

2017 

2018

Nguyễn Trịnh Hồng Hương
10 tháng 3 2016 lúc 21:42

Làm chi tiết cho tớ với

Người lạnh lùng
Xem chi tiết
Đồng Thiên Ái ***
1 tháng 12 2018 lúc 20:50

123456789

Nguyệt
1 tháng 12 2018 lúc 21:18

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất

\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

dấu = xảy ra khi |x-2016|=0

=> x=2016

Vậy Min A=\(\frac{2017}{2018}\)khi x=2016

ps: sai sót bỏ qua 

Trần Thị Hảo
Xem chi tiết
Nguyễn Việt Anh
7 tháng 11 2019 lúc 20:47

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

Khách vãng lai đã xóa
Carthrine Nguyễn
Xem chi tiết
Edowa Conan
19 tháng 9 2016 lúc 17:04

Vì \(\left|x-7\right|\ge0;\left|x-2016\right|\ge0;\left|x-2017\right|\ge0\)

         Suy ra:\(\left|x-7\right|+\left|x+2016\right|+\left|x-2017\right|\ge0\)

      Dấu = xảy ra khi x-7=0;x=7

                                 x+2016=0;x=-2016

                                 x-2017=0;x=2017

Vậy Min A=0 khi x=7;-2016;2017

Nguyễn Phạm Thanh Nga
20 tháng 3 2018 lúc 20:14

A = |x-7|+|x-2016|+|x-2017|

= |x-7|+|x-2016|+|2017-x|

≥ |x-7+2017-x|+|x-2016| = 2017+|x-2016|≥2017

để A nhỏ nhất => A = 2017

=> |x - 2016| = 0 => x = 2016

Subin
Xem chi tiết
Phùng Minh Quân
1 tháng 10 2018 lúc 17:09

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)

\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)

\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)

\(\Leftrightarrow\)\(x=2016\)

Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)

Chúc bạn học tốt ~ 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2018 lúc 13:45

Đáp án: a= 2017