CMR: a) Nếu x - y = 0 thì \(xy\ge0\)
b) Nếu x - y + z = 0 thì \(xy+yz-zx\ge0\)
235. Chứng minh rằng
a) Nếu x-y=0 thì \(xy\ge0\)
b) Nếu x-y+z=0 thì \(xy+yz-zx\ge0\)
Ta có : x - y = 0 => x = y
Vì x = y => xy = x2 = y2 ≥ 0
=> xy ≥ 0 ( đpcm )
CMR:
a) Nếu x-y=0 thì xy lớn hơn hoặc bằng 0
b) Nếu x-y+z=0 thì xy+yz-zx > hoặc =0
a. Ta có : x - y = 0 \(\Rightarrow\)x = y
Ta có : xy = xx ( vì x = y) = x^2
Mà x^2 \(\ge\)0 với mọi x nên xy \(\ge\)0 với mọi x.
a) Ta có x-y=0 => x=y
Ta có xy=x.x=x2 > 0 (dấu = <=> x=y=0)
b) x-y+z=0 => x=y-z.Theo kết quả câu a ta có: x(y-z) > 0 => xy-xz > 0 (1)
Tương tự: x-y+z=0 => y=x+z => y(x+z) > 0 => xy+yz > 0 (2)
x-y+z=0 => z=y-x => z(y-x) > 0 => zy-zx > 0 (3)
Cộng từng vế của bất đẳng thức (1),(2),(3) ta đc 2(xy+yz-zx) > 0
Do đó xy+yz-zx > 0 (dấu = <=> x=y=z=0)
Good luck
CMR: nếu x-y+z=0 thì xy+yz-zx > hoặc = 0
CMR
\(x^2+y^2+z^2-xy-yz-zx\ge0\forall x;y;z\)
ta có : \(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{matrix}\right.\)
cộng quế theo quế ta có : \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\forall x;y;z\left(đpcm\right)\)
cm nếu (x+y+z)=x^2+y^2+z^2 thì xy +yz+zx=0
nếu (x^2+y^2+z^2).(a^2+b^2+c^2)=(ã+by+cx)^2 thì a/x=b/y=c/z
chứng minh rằng nếu x-y+z=0 thì xy+yz-zx lớn hơn hoặc bằng 0
Lời giải:
Khi $x-y+z=0\Rightarrow y=x+z$. Thay vào biểu thức $xy+yz-xz$ thì:
$xy+yz-xz=x(x+z)+(x+z)z-xz=x^2+xz+z^2=x^2+\frac{xz}{2}+\frac{xz}{2}+\frac{z^2}{4}+\frac{3}{4}z^2$
$=(x+\frac{z}{2})^2+\frac{3}{4}z^2$
Dễ thấy $(x+\frac{z}{2})^2\geq 0; \frac{3}{4}z^2\geq 0$ với mọi $x,y,z$ nên $xy+yz-xz\geq 0$
Ta có đpcm.
cho x,y,z >0. CMR:
\(\frac{x^2-xy}{x+y}+\frac{y^2-yz}{y+z}+\frac{z^2-xz}{z+x}\ge0\)
Cho \(\left\{\begin{matrix}x\ge0;y\ge0;z\ge0\\x+y+z=1\end{matrix}\right.\)
Chứng minh rằng : \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
GIÚP MÌNH NHÉ, MẶC DÙ TẾT NHÉ
Lời giải:
Chứng minh \(xy+yz+xz-2xyz\leq \frac{7}{27}\)
Theo BDDT Schur ta có \(xyz\geq (x+y-z)(z+x-y)(y+z-x)=(1-2x)(1-2y)(1-2z)\)
\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)
Do đó \(A=xy+yz+xz-xyz\leq xy+yz+xz-\frac{8}{9}(xy+yz+xz)+\frac{2}{9}=\frac{xy+yz+zx}{9}+\frac{2}{9}\)
Theo AM-GM dễ thấy \(1=(xy+yz+xz)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
\(\Rightarrow A\leq \frac{7}{27}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
Chứng minh \(xy+yz+xz-2xyz\geq 0\)
Do $x,y,z\geq 0$ nên
\(A=xy(1-z)+yz(1-x)+xz=xy(x+y)+yz(y+z)+xz\geq 0\)
Dấu bẳng xảy ra khi \((x,y,z)=(0,0,1)\) và các hoán vị của nó
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z=1\end{matrix}\right.\) Chứng minh \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow xy+yz+zx-2xyz=xy\left(1-z\right)+yz\left(1-x\right)+zx\ge0\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
Mặt khác do vai trò của x;y;z là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x=min\left\{x;y;z\right\}\Rightarrow1=x+y+z\ge3x\Rightarrow0\le x\le\frac{1}{3}\)
\(P=x\left(y+z\right)+yz\left(1-2x\right)=x\left(1-x\right)+yz\left(1-2x\right)\)
\(P\le x\left(1-x\right)+\frac{1}{4}\left(y+z\right)^2\left(1-2x\right)=x\left(1-x\right)+\frac{1}{4}\left(1-x\right)^2\left(1-2x\right)\)
\(P\le\frac{-2x^3+x^2+1}{4}=\frac{-2x^3+x^2+1}{4}-\frac{7}{27}+\frac{7}{27}\)
\(P\le-\frac{\left(1-3x\right)^2\left(6x+1\right)}{108}+\frac{7}{27}\le\frac{7}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)