Bài 3: Tìm nghiệm của các đa thức sau:
a) x mũ 2 -5x+4
b) x mũ 2+x+3
Bài 3: Tìm nghiệm của các đa thức sau:
a) ( x-2) (4-3x) b) x mũ 2 - 4 c) x mũ 2 + căn 7
d) x mũ 2 + 5x e) x mũ 2 + 5x - 6 f) x mũ 2 +x +1
h) 7x mũ 2 + 11x +4
a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:
x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.
b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:
(x-2)(x+2) = 0 x = 2 hoặc x = -2Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.
c) Để tìm nghiệm của đa thức x^2 + √7, ta không thể giải phương trình x^2 + √7 = 0 vì không có số nào bình phương bằng √7. Vì vậy, đa thức này không có nghiệm trong tập số thực.
d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:
x = 0 hoặc x = -5Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.
e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:
x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.
f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.
h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:
Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + √Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - √Δ) / 2a = (-11 - 3) / 14 = -7/2Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.
(tham khảo
20:22
a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:
x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.
b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:
(x-2)(x+2) = 0 x = 2 hoặc x = -2Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.
c) Để tìm nghiệm của đa thức x^2 + √7, ta không thể giải phương trình x^2 + √7 = 0 vì không có số nào bình phương bằng √7. Vì vậy, đa thức này không có nghiệm trong tập số thực.
d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:
x = 0 hoặc x = -5Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.
e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:
x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.
f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.
h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:
Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + √Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - √Δ) / 2a = (-11 - 3) / 14 = -7/2Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.
tham khảo
20:2220:22
a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:
x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.
b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:
(x-2)(x+2) = 0 x = 2 hoặc x = -2Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.
c) Để tìm nghiệm của đa thức x^2 + √7, ta không thể giải phương trình x^2 + √7 = 0 vì không có số nào bình phương bằng √7. Vì vậy, đa thức này không có nghiệm trong tập số thực.
d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:
x = 0 hoặc x = -5Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.
e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:
x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.
f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.
h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:
Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + √Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - √Δ) / 2a = (-11 - 3) / 14 = -7/2Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.
20:22A(x)=x mũ 4 + 5x mũ 3 -6x + 2x mũ 2 + 10x - 5x mũ 3 +1
B(x)= x mũ 4 -2x mũ 3+2x mũ 2 + 6x mũ 3 +1
a,thu gọn hai đa thức trên và tính : M(x)= A(x) - B (x)
b, tìm nghiệm của đa thức M(x)
bài 2 :cho đa thức A(x)=3/4x mũ 3-1+3/5x+4x mũ 2 +5/4x mũ 3 - 8/5x +4+7x mũ 2
a, thu gọn và sapws xếp đa thức A(x) theo lũy thừa giảm dần của biến
b, xác định bậc và hệ số cao nhất của đa thức A(x)
c,tìm đa thức C(x) sao cho B(x) - C (X)= A(x)
biết B(x)=2x mũ 3 + 12x mũ 2 - 3x + 3 tìm nghiệm của C(x)
a: A(x)=3/4x^3+5/4x^3+4x^2+7x^2+3/5x-8/5x-1+4
=2x^3+11x^2-x+3
b: Bậc là 3
Hệ số cao nhất là 2
c: C(x)=2x^3+12x^2-3x+3-2x^3-11x^2+x-3
=x^2-2x
C(X)=0
=>x=0 hoặc x=2
bài 1; sắp sếp các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
a, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
b, ( x mũ 3 + 2x mũ 4 - 5x mũ 2 - 3 - 3x ) : ( x mũ 2 - 3 )
c, ( 5x mũ 2 + 15 - 3x mũ 2 - 9x ) : ( 5 - 3x )
d, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
e, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
bài 2:
P(X)=3x mũ 2 +7+ 2x mũ 4 -3x mũ 2 -4-5x+2x mũ 3
Q(x)=-3x mũ 3 +2x mũ 2 -x mũ 4 +x+x mũ 3 + 4x-2 + 5x mũ 4
a, thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
\(P\left(x\right)=3x^2+7+2x^4-3x^2-4-5x+2x^3\)
\(=2x^4+2x^3+\left(3x^2-3x^2\right)-5x-4+7\)
\(=2x^4+2x^3-5x+3\)
\(Q\left(x\right)=-3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
\(=\left(5x^4-x^4\right)+\left(-3x^3+x^3\right)+2x^2+\left(x+4x\right)-2\)
\(=4x^4-2x^3+2x^2+5x-2\)
P (x) = -x mũ 5 + x mũ 4 - 3x mũ 3 + 2x mũ 2 - 5x -2
Q (x) = x mũ 5 -x mũ 4 + 3x mũ 3 - 2x mũ 2 + 3x + 11
a) tìm nghiệm của đa thức H(x) biết H(x) - Q(x) = P(x)
b) x=9 có là nghiệm của đa thức H (x) không?
a: \(H\left(x\right)=-x^5+x^4-3x^3+2x^2-5x-2+x^5-x^4+3x^3-2x^2+3x+11\)
=-2x+9
Đặt H(x)=0
=>-2x+9=0
hay x=-9/2
b: Vì H(9)<>0 nên x=9 ko là nghiệm của H(x)
a: H(x)=−x5+x4−3x3+2x2−5x−2+x5−x4+3x3−2x2+3x+11�(�)=−�5+�4−3�3+2�2−5�−2+�5−�4+3�3−2�2+3�+11
=-2x+9
Đặt H(x)=0
=>-2x+9=0
hay x=-9/2
b: Vì H(9)<>0 nên x=9 ko là nghiệm của H(x)
Tìm nghiệm của các đa thức sau:
1)F(x)= 9x mũ 2+8-x1
2) G(x)= x mũ 2-10x+9
3)H(x)= |2x-3|-5
4)M(x)= |5x mũ 2-10|
Cám ơn
bài 1 ; sắp xếp các đa thức sau theo luỹ thừa giảm dần của biến rồi thực hiện phép chia
a, ( - 2x + 2x mũ 3 - 3 - 5x mũ 2 ) : ( x - 3 )
b, ( 2 + x + 8x mũ 3 - 2x mũ 2 ) : ( 2x + 1 )
c, ( - x mũ 2 + 6x mũ 3 - 26x + 21 ) : ( x - 1 )
d, ( 22 x mũ 2 + 5x mũ 3 + 10 - 13x ) : ( 5x mũ 2 - 3x + 2 )
e, ( 8x - 5 - 3x mũ 2 - 3x mũ 2 + x mũ 4 ) : ( x - 1 )
bài làm sai hết rồi!
toán cái gì mà toán 😡
ng ta hỏi bài chứ có lm bài đâu mà sai
Cho 2 đa thức:
M(x)= x mũ 4+ 3x mũ 3- 5x mũ 2 + 7x+2 và N(x)= x mũ 4- 2x mũ 3+ x-2
a) Tính M(x)+N(x)
b)Tính M(x)-N(x)
Tìm nghiệm của các đa thức sau:
a)N(x)=x(x-1/2)+2(x-1/2)
b)M(x)=1/2.x2+3/4.x