Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
baohoang

Những câu hỏi liên quan
Anh Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 10 2021 lúc 22:25

Đề bài yêu cầu gì?

Diệp Bảo Tường Vy
Xem chi tiết
Nguyễn Đức Trí
5 tháng 8 2023 lúc 17:22

\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)

\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)

\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)

\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)

\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)

Phạm Đức Cường
Xem chi tiết
Pham Khanh Linh
Xem chi tiết
Nguyễn Thái Thịnh
27 tháng 1 2022 lúc 13:06

a, Xem lại đề.

b, <=> \(3^{n+1}=3^5\) <=> \(n+1=5\) <=> \(n=4\)

c, <=> \(7^{n-4}=7^2\) <=> \(n-4=2\) <=> \(n=6\)

d, <=> \(n=\pm3\)

e, <=> \(2^{n+4}=2^7\) <=> \(n+4=7\) <=> \(n=3\)

g, <=> \(2^n=\frac{1}{25}\) <=> .... (xem lai đề)

h, <=>  \(n=6\)

k, <=> \(n^2=81\) <=> \(n=\pm9\)

l, <=> \(n^2\left(n-1\right)=0\) <=> \(\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

Khách vãng lai đã xóa
hưng proo
Xem chi tiết
Trần Anh
Xem chi tiết
Nguyen Thi Dieu Linh
Xem chi tiết
Nguyễn Minh Trí
22 tháng 6 2017 lúc 10:29

a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100                                                                                                                                                  => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101                                                                                                                                                   => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101                                                                                                                 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101                                                                                                                                       Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B                                                                                                                                                   => 2B = 1 + 1/2 + 1/22 +..+ 1/299                                                                                                                                                                   => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100                                                                                            => 1/2A = 1 - 1/2100 - 100/2101                                                                                                                                                                 Có 1/2A < 1 => A < 2 =>ĐPCM                                                                                                                          b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101                                                                                                                                                => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101                              Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D                                                                                                                                               => 3D = 1 + 1/3 +..+ 1/399                                                                                                                                                                         => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100                                                                                                       => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101                                                                                                                                                 Có 4/3C < 1 => C<3/4 => ĐPCM              Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)          

Lê Thị Ngọc Diệp
Xem chi tiết
Huy, Hoàng Khôi Hoàng
14 tháng 12 2021 lúc 6:24

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

b)

Nhân 4 vào hai vế ta được:

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

  
Minh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 2 2022 lúc 16:26

uses crt;

var s:real;

i,n:integer;

begin

clrscr;

readln(n);

s:=0;

for i:=1 to n do 

  s:=s+(n*(n+1))/((n+2)*(n+3));

writeln(s:4:2);

readln;

end.

vũ ngọc bảo phúc
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 2 2019 lúc 19:16

Ta cần chứng minh:\(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Với \(n=1\Rightarrow1=1\)(đúng)

Giả sử bài toán đúng với \(n=k\left(n\inℕ^∗\right)\) thì ta có:

 \(1+2^3+3^3+...+k^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với \(n=k+1\) tức là:

\(1^3+2^3+3^3+....+n^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(A_{k+1}=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\) [theo (1)]

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

\(\Rightarrow\left(2\right)\) đúng

\(\Rightarrow\left(1\right)\) đúng.

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{n^2\cdot\left(n+1\right)^2}{4}\)

\(\Rightarrow1^3+2^3+...+n^3=\frac{n^2\cdot\left(n+1\right)^2}{4}\left(đpcm\right)\)