Chứng minh rằng: 1/1.3 + 1/2.4 + 1/3.5 + 1/4.6 + ...+ 1/2013.2015 + 1/2014.2016 < 3/4
Giúp!!!!!!!!
Tìm người có số IQ cao nha ( là người giỏi, nhanh, đúng )
CMR: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}\) \(< \frac{3}{4}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)
\(\Leftrightarrow A=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)
\(\Leftrightarrow A=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(\Leftrightarrow A=\left(1-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(\Leftrightarrow A=\frac{2014}{2015}+\frac{1007}{2016}\)
\(\Leftrightarrow A=1,5\)
Đổi \(\frac{3}{4}=0,75\)
Vì 0,75 < 1,5
Nên ko thể CM
Bài này mà cũng hỏi thì đừng có thi nữa. đợi vài ngày sau có đáp án nhé.
(1+1/1.3)(1+1/2.4)(1+1/3.5)(1+1/4.6)...(1+1/2013.2015
\(\left(1+\frac{1}{1.3}\right).....\left(1+\frac{1}{2013.2015}\right)=\frac{2^2}{1.3}.....\frac{2014^2}{2013.2015}=\)\(\frac{2.3.....2014}{1.2.....2013}.\frac{2.3.....2014}{3.4.....2015}=2014.\frac{2}{2015}=\frac{4028}{2015}\)
chứng minh rằng:1/1.3 + 1/2.4 + 1/3.5 + 1/4.6 +....+ 1/97.99 + 1/98.100 < 3/4
chứng minh rằng 1^1.3 + 1^2.4 + 1^3.5 + 1^4.6 +...+ 1^97.99+ 1^98.100 < 3^4
giúp mình giải bài tập nha! mình sẽ tick cho!
bài 2:
a, cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}.CMR:b=c\)
b, CMR: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+......+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)
Yêu cầu các CTV, các bạn làm sai giúp nhé! Nếu bạn muốn đáp án tham khảo thì sau đề vòng 1 mk sẽ giải nhé
Chứng tỏ :
a, A = \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2022.2024}\) < \(\dfrac{1}{4}\)
b, B =\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}< \dfrac{1}{2}\)
c, C =\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{4}\)
d, D =\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2014^2}< \dfrac{1}{2}\)
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)
Chứng minh rằng: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{97.99}+\frac{1}{98.100}< \frac{3}{4}\)
1.chứng minh rằng : s = 1/4+1/16+1/36+....+1/100<1/2
2.tính :s = 1.3 +2.4+3.5 +4.6+.....+2016.2018
Cho A = 1/1.3 + 1/2.4 + 1/3.5 + 1/3.5 + 1/4.6 + ... + 1/98.100 .Chứng tỏ A < 3/4