Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Linh
Xem chi tiết
Gia Huy
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

hải nam lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 22:48

3:

Đặt HB=x; HC=y

Theo đề, ta có: x+y=289 và xy=120^2=14400

=>x,y là các nghiệm của phương trình:

a^2-289a+14400=0

=>a=225 hoặc a=64

=>(x,y)=(225;64) và (x,y)=(64;225)

TH1: BH=225cm; CH=64cm

=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)

TH2: BH=64cm; CH=225cm

=>AB=119m; AC=255cm

Nguyễn Ngoc Minh Đan
Xem chi tiết
phúc tien á
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 8:23

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

nongvietthinh
Xem chi tiết
Trương Phúc Uyên Phương
28 tháng 7 2015 lúc 11:32

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

Cao Linh Chi
13 tháng 2 2016 lúc 11:14

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

ko ten ko tuoi
5 tháng 3 2016 lúc 21:08

viet ba dao nhu the co ma lam dc!!! 

Đinh Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 13:05

Ta có: \(\dfrac{AB}{AC}=\dfrac{1}{3}\)

\(\Leftrightarrow AC=3\cdot AB\)

\(\Leftrightarrow AB\cdot AC=3\cdot AB^2\)

\(\Leftrightarrow AH\cdot BC=3\cdot AB^2\)

\(\Leftrightarrow\dfrac{AH\cdot BC}{BC^2}=3\cdot\dfrac{AB^2}{BC^2}\)

\(\Leftrightarrow\dfrac{AH}{BC}=\dfrac{3AB^2}{BC^2}\)

NGUYỄN QUANG NGHĨA
Xem chi tiết
Yen Nhi
27 tháng 4 2022 lúc 23:47

loading...  

Nguyễn Thái Thùy Linh
Xem chi tiết
KCLH Kedokatoji
3 tháng 9 2020 lúc 16:01

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

Khách vãng lai đã xóa
Hoa Cửu
3 tháng 9 2020 lúc 18:26

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

Khách vãng lai đã xóa
Nguyễn Thái Thùy Linh
3 tháng 9 2020 lúc 20:22

bạn cho mình hỏi tại sao AH=BH.HC??

Khách vãng lai đã xóa
Khuyên Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 13:05

Ta có: \(\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(AB=\dfrac{3}{5}BC\)

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow\dfrac{9}{25}BC^2-a\cdot BC=0\)

\(\Leftrightarrow BC\cdot\left(\dfrac{9}{25}BC-a\right)=0\)

\(\Leftrightarrow BC\cdot\dfrac{9}{25}=a\)

hay \(BC=a:\dfrac{9}{25}=\dfrac{25}{9}a\)

\(\Leftrightarrow AB=\dfrac{3}{5}BC=\dfrac{3}{5}\cdot\dfrac{25}{9}a=\dfrac{5}{3}a\)

\(\Leftrightarrow CH=BC-BH=\dfrac{25}{9}a-a=\dfrac{16}{9}a\)

\(\Leftrightarrow AC=\sqrt{\left(\dfrac{25}{9}a\right)^2-\left(\dfrac{5}{3}a\right)^2}=\dfrac{20}{9}a\)

\(\Leftrightarrow AH=\sqrt{\left(\dfrac{20}{9}a\right)^2-\left(\dfrac{16}{9}a\right)^2}=\dfrac{4}{3}a\)