với x;y là số nguyên dương tm:\(\frac{x^2-1}{2}=\frac{y^2-1}{3}\). Chứng minh: x^2-y^2 chia hết cho 40. Gjup mk vs mấy bạn nhé. cảm ơn nkju
Khoanh tròn vào chữ cái trước khẳng định đúng.
Bỏ dấu giá trị tuyệt đối của biểu thức |x−2| ta được biểu thức:
A. x – 2 với x > 2 và 2 – x với x < 2
B. x – 2 với x ≥ 2 và 2 – x với x < 2
C. x – 2 với x > 0 và 2 – x với x < 0
D. x – 2 với x ≥ 0 và 2 – x với x < 0
Khoanh tròn vào chữ cái trước khẳng định đúng.
Bỏ dấu giá trị tuyệt đối của biểu thức |−5x| ta được biểu thức:
A. -5x với x > 0 và 5x với x < 0
B. -5x với x ≥ 0 và 5x với x < 0
C. 5x với x > 0 và -5x với x < 0
D. -5x với x ≤ 0 và 5x với x > 0
Tìm các số nguyên x biết
a) |x-1| = 6 với x > 1
b) |x+2| = 3 với x > 0
c) x + |3 - x| = 7 với x > 3
a) |x-1| = 6 với x > 1
Do x > 1 nên x + 1 > 0. Từ đó | x - 1| = x – 1 (Giá trị tuyệt đối của một số nguyên dương)
Theo đề bài, ta có: x – 1 = 6 hay x = 7
b) |x+2| = 3 với x > 0
Do x > 0 nên x + 2 > 0. Từ đó b) |x + 2| = x + 2 (Giá trị tuyệt đối của một số nguyên dương)
Theo đề bài, ta có: x + 2 = 3 hay x =1
c) x + |3 - x| = 7 với x > 3
Do x > 3 nên 3 - x là một nguyên âm. Từ đó |3 - x| = - (3 - x)
Theo đề bài, ta có:
x + |3 - x| = 7
x + x - 3 = 7
x\(^2\) = 7 + 3 = 10
x = 10 : 2 = 5
Giải:
a)
|x-1| = 6 với x > 1
Do x > 1 nên x + 1 > 0. Từ đó | x - 1| = x – 1 (Giá trị tuyệt đối của một số nguyên dương)
Theo đề bài, ta có: x – 1 = 6 hay x = 7
b) |x+2| = 3 với x > 0
Do x > 0 nên x + 2 > 0. Từ đó b) |x + 2| = x + 2 (Giá trị tuyệt đối của một số nguyên dương)
Theo đề bài, ta có: x + 2 = 3 hay x =1
c) x + |3 - x| = 7 với x > 3
Do x > 3 nên 3 - x là một nguyên âm. Từ đó |3 - x| = - (3 - x)
Theo đề bài, ta có:
x + |3 - x| = 7
x + x - 3 = 7
x2 = 7 + 3 = 10
x =10:2=5
1) x+(16/x-2) với x>2
2) 5x+ (180/x-1) với x>1
3) x/2 +(2x/x-1) với x >1
4) 2/2-x +(1/x) với 0<x<2
Giúp mình với. đề là tìm gtnn
Có bao nhiêu mệnh đề dưới đây là đúng?
3 x > 2 x v ớ i ∀ x ∈ ℝ 4 x 2 ≥ 3 x 2 v ớ i ∀ x ∈ ℝ 81 x - 1 ≤ 3 x 2 v ớ i ∀ x ∈ ℝ 5 x + 3 x > 4 x v ớ i ∀ x ∈ ℝ 2 x + 3 x < 5 x v ớ i ∀ x > 1
A. 2
B. 3
C. 4
D. 5
Bỏ dấu GTTĐ
a) /x/ với x > 0
b) /x/ với x < 0
c) / x + 1 / với x > 0
d) / x - 3 / với x > 3
e) / x - 5 / với x < 5
g) / x + 2 / với x < -2
cho x và y tỉ lệ nghịch với nhau với x=5 , y = 1/2 . Tìm h có hệ số tỉ lệ của y với x , biểu diên x theo y , y theo x, với x=-3 . tìm y , với y = -6 tìm x
a: Vì x và y tỉ lệ nghịch
nên hệ số tỉ lệ của y đối với x là \(h=x\cdot y=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\)
b:\(x\cdot y=\dfrac{5}{2}\)
=>\(y=\dfrac{5}{2x};x=\dfrac{5}{2y}\)
Khi x=-3 thì \(y=\dfrac{5}{2\cdot\left(-3\right)}=\dfrac{5}{-6}=-\dfrac{5}{6}\)
Khi y=-6 thì \(x=\dfrac{5}{2\cdot\left(-6\right)}=\dfrac{5}{-12}=-\dfrac{5}{12}\)
tìm giá trị nhỏ nhất của các biểu thức sau:
a A=\(\dfrac{x^3+2021}{x}\) với x>0
b B=\(4x+\dfrac{25}{x-1}\)với x>1
c C=\(\dfrac{3x^4+16}{x^3}\)với x>0
d D=\(x+\dfrac{1}{x}\)với x lớn hơn bằng 2
e E=\(\dfrac{9x}{2-x}+\dfrac{2}{x}\)với 0<x<2
f F=\(\dfrac{3}{1-x}+\dfrac{4}{x}\)với 0<x<1
a.
\(A=x^2+\dfrac{2021}{x}=x^2+\dfrac{2021}{2x}+\dfrac{2021}{2x}\ge3\sqrt[3]{\dfrac{2021^2}{4x^2}}=3\sqrt[3]{\dfrac{2021^2}{4}}\)
Dấu "=" xảy ra khi \(x=\sqrt[3]{\dfrac{2021}{3}}\)
b.
\(B=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)
Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)
c.
\(C=3x+\dfrac{16}{x^3}=x+x+x+\dfrac{16}{x^3}\ge4\sqrt[4]{\dfrac{16x^3}{x^3}}=8\)
\(A_{min}=8\) khi \(x=2\)
d.
\(D=x+\dfrac{1}{x}=\left(\dfrac{x}{4}+\dfrac{1}{x}\right)+\dfrac{3}{4}.x\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(x=2\)
e.
\(E=\dfrac{9\left(x-2\right)+18}{2-x}+\dfrac{2}{x}=2\left(\dfrac{1}{x}+\dfrac{9}{2-x}\right)-9\ge\dfrac{2.\left(1+3\right)^2}{x+2-x}-9=7\)
\(E_{min}=7\) khi \(x=\dfrac{1}{5}\)
f.
\(F=\dfrac{3}{1-x}+\dfrac{4}{x}\ge\dfrac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)
Dấu "=" xảy ra khi \(x=4-2\sqrt{3}\)
Cho hàm số : f x = x 2 x v ớ i x < 1 , x ≠ 0 0 v ớ i x = 0 x v ớ i x ≥ 1
A. Mọi điểm thuộc R
B. Mọi điểm trừ x=0
C. Mọi điểm trừ x=1
D. Mọi điểm trừ x=0 và x=1
Tính giá trị của (x2-5)(x+3)+(x+4)(x+x2)
a)Với x=0
b)Với x=15
c)Với x=-15
d)Với x=0,15