Cho hai số dương x, y thoả xy=3. Tìm giá trị nhỏ nhất của biểu thức P= 3/x +9/y -26/3x+y
Cho hai số dương x,y thoả xy=3
Tìm GTNN biểu thức \(P=\frac{3}{x}+\frac{9}{y}-\frac{26}{3x+y}\)
cho x,y là các số dương thoả 2x+y+xy=6. Tìm giá trị nhỏ nhất của biểu thức \(P=8x^3+y^3\)
Dự đoán xảy ra cực trị tại y = 2 và x = 1
Ta biến đổi nhưng sau: \(P=\left(8x^3+8+8\right)+\left(y^3+8+8\right)-32\)
\(\ge3\sqrt[3]{8x^3.8.8}+3\sqrt[3]{y^3.8.8}-32\)
\(=24x+12y-32=12\left(2x+y-\frac{8}{3}\right)\)
\(=12\left(6-\frac{8}{3}-xy\right)=12\left(\frac{10}{3}-xy\right)\)
\(=12\left(\frac{10}{3}-1x.2y\right)\ge12\left(\frac{10}{3}-\frac{\left(x+1\right)^2}{4}.\frac{\left(y+2\right)^2}{4}\right)\)
\(=12\left(\frac{10}{3}-\frac{\left[\left(x+1\right)\left(y+2\right)\right]^2}{4}\right)\)
\(=12\left(\frac{10}{3}-\frac{xy+2x+y+2}{4}\right)=12\left(\frac{10}{3}-\frac{6+2}{4}\right)=16\)
Vậy P min = 16 khi x = 1;y=2
Ta có 2x+y+xy=6
\(\Leftrightarrow\)2x+xy+y+2=6+2
\(\Leftrightarrow\)x(y+2)+y+2=8
\(\Leftrightarrow\)(y+2)(x+1)=8
\(\Rightarrow\)(x+1),(y+2)\(\in\)Ư(8)={1;2;4;8;-1;-2;-4;-8}
\(\Rightarrow\)Ta có bẳng sau:
x+1 | 1 | 2 | 4 | 8 | -1 | -2 | -4 | -8 | ||||
y+2 | 8 | 4 | 2 | 1 | -8 | -4 | -2 | -1 |
\(\Rightarrow\)
x | 0 | 1 | 3 | 7 | -2 | -3 | -5 | -9 |
y | 6 | 2 | 0 | -1 | -10 | -6 | -4 | -3 |
Vì x,y nguyên dương\(\Rightarrow\)(x,y)={(0;6),(1;2),(3;0)}
(thay lần lượt các cặp nghiệm nguyên vào biểu thức \(P=8x^3+y^3\))
cho x, y là các số thực dương thoả mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3^{ }}=\frac{1}{xy}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Cho các số thực dương x,y thoả mãn: (x+y-1)^2= xy . Tìm giá trị nhỏ nhất của biểu thức P=1/xy + 1/x^2+y^2 + căn(xy)/x+y
Cho x, y là các số thực dương thoả mãn x + y = 1.
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :
\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)
\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)
Cho 3 số dương x; y; z thoả mãn .
Tìm giá trị nhỏ nhất của biểu thức
Cho các số thực x và y thoả mãn điều kiện x^2+y^2=2. tìm giá trị nhỏ nhất của biểu thức P=3(x+y)+xy
\(P=\dfrac{6x+6y+2xy}{2}=\dfrac{6x+6y+2xy+10-10}{2}\)
\(=\dfrac{6x+6y+2xy+2\left(x^2+y^2\right)+6}{2}-5\)
\(=\dfrac{\left(x+y+2\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-5\ge-5\)
\(P_{min}=-5\) khi \(x=y=-1\)