Cho A= 29+299. CMR A chia hết cho 100
cho tổng A=1+2+22+23+...+299
a) Rút gọn A b) CMR: A chia hết cho 3 và 5 |
c) CMR: A không chia hết cho 7
d) Tìm chữ số tận cùng của A
a) \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)
b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)
\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)
\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5
c) \(A=1+2+2^2+...+2^{99}\)
\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1
=> A không chia hết cho 7
Cho A= 20+21+22+23+24+25 +26 .........+ 299 CMR: A chia hết cho 31
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
1.Cho a,b thuộc N thỏa mãn (3a+2b) chia hết cho 17. CMR (10a+b) chia hết cho 17.
2.Cho x,y thuộc N thỏa mãn (7x+4y)chia hết cho 29. CMR (9x+y) chia hết cho 29.
3.Cho S là tổng của SSTN liên tiếp. Hỏi S chia cho 8 dư bao nhiêu ?
4.Cho abcd (abcd có dấu gạch ngang ở trên) chia hết cho 29. CMR (a+3b+9c+27d) chia hết cho 29.
CMR abcd chia hết cho 29 thì a+3b+9c+27d chia hết cho 29
cmr: số abcd(có gạch đầu) chia hết cho 29 thì (a+3b+9c+27d) chia hết cho 29
Ta có:
abcd=1000a+100b+10c+d=986a+87b+14a+13b+10c+d=29.(34a+3b)+(14a+13b+10c+d)
=>14a+13b+10c+d chia hết cho 29
ta lại có
a+3b+9c+27d=29.(a+b+c+d)-(28a+26b+20c+2d)=29(a+b+c+d)-2(14a+13b+10c+d)
vì 29(a+b+c+d) chia hết cho 29 và 2(14a+13b+10c+d) cũng chia hết cho 29
=>a+3b+9c+27d chia hết cho 29 (ĐPCM)
Cho N=dcba . CMR :
a) N chia hết cho 4 (=) (a+2b) chia hết cho 4 .
b) N chia hết cho 16 (=) (a+2b+4c+8d) chia hết chố với b chẵn .
c) N chia hết cho 29 (=) (d+2c+9b+27a) chia hết cho 29
cmr: abcd chia hết cho 29 <=> a+ 3b+9c+27d chia hết cho 29
\(\Leftrightarrow\left(29\cdot34+14\right)a+\left(29\cdot3+13\right)b+10c+d\)chia hết cho 29
\(\Leftrightarrow14a+13b+10c+d\)chia hết cho 29
\(\Leftrightarrow28a+26b+20c+2d\)chia hết cho 29
\(\Leftrightarrow-28a-26b-20c-2d\)chia hết cho 29
\(\Leftrightarrow-28a-26b-20c-2d+29a+29b+29c+29d\)chia hết cho 29
\(\Leftrightarrow a+3b+9c+27d\)chia hết cho 29 (ĐPCM).
CMR abcd chia hết ch 29 thì a + 3b + 9c +27d chia hết cho 29
CMR:
a)5300+5299+5298+..+5 chia hết cho 31
b)132n+1+142+14n chia hết cho 155
a) Đặt \(A=5^{300}+5^{299}+...+5\)
\(\Rightarrow A=\left(5^{300}+5^{299}+5^{298}\right)+...+\left(5^3+5^2+5\right)\)
\(\Rightarrow A=5^{298}.\left(5^2+5+1\right)+...+5\left(5^2+5+1\right)\)
\(\Rightarrow A=5^{298}.31+...+5.31\)
\(\Rightarrow A=\left(5^{298}+...+5\right).31⋮31\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$