cho pt: x^2-2x+m^2-2m+1=0.cm pt có hai nghiệm pb
nhanh giúp e nhé
Bài 1: Cho pt: 2(m-1) x + 3 = 2m - 5 (1)
a) tìm m để pt (1) là pt bậc nhất một ẩn
b) Tìm m để pt vô nghiệm
c) Tìm m để pt có nghiệm duy nhất
d) Tìm m để pt vô số nghiệm %3D
e) Với giá trị nào của m thì pt (1) tương đương với pt 2x+5 = 3(x+2)-1
giúp mk vs ạ, mk cam tạ
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
Cho pt x^2-(2m-1)x+m(m-1) = 0. Gọi x1,x2 là hai nghiệm của pt với x1<x2. Cm x1^2-2x2+3>=0
(3) cho pt bậc hai: \(x^2-2x+2m-1=0\). xác định m để pt có:
a) 2 nghiệm
b) 2 nghiệm phân biệt
c) có nghiệm kép
d) vô nghiệm
giúp mk vs ạ mk cần gấp
\(a,\Leftrightarrow\Delta=\left(-2\right)^2-4\left(2m-1\right)\ge0\\ \Leftrightarrow4-8m+4\ge0\\ \Leftrightarrow8-8m\ge0\Leftrightarrow m\le1\\ b,\Leftrightarrow\Delta=8-8m>0\Leftrightarrow m< 1\\ c,\Leftrightarrow\Delta=8-8m=0\Leftrightarrow m=1\\ d,\Leftrightarrow\Delta=8-8m< 0\Leftrightarrow m>1\)
cho pt x^2-(2m+1)x+m^2-m=0 tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn \(\sqrt{2x_1}\)+1=\(x_2\)
giải cái căn 2x1+1=x2 giúp e với
=>căn 2x1=x2-1
=>2x1=x2^2-2x2+1
=>x2^2-2(x1+x2)+1=0
=>x2^2-2(2m+1)+1=0
=>x2^2=4m+2-1=4m+1
=>\(x_2=\pm\sqrt{4m+1}\)
=>\(x_1=2m+1\pm\sqrt{4m+1}\)
x1*x2=m^2-m
=>m^2-m=4m+1\(\pm2m+1\)
=>m^2-5m-1=\(\pm2m+1\)
TH1: m^2-5m-1=2m+1
=>m^2-7m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
TH2: m^2-5m-1=-2m-1
=>m^2-3m=0
=>m=0; m=3
cho pt : \(2x^2+\left(2m-1\right)x+m-1=0\)
Tìm m để pt có 2 nghiệm | x1 - x2|=3
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)>=0
=>Phương trình luôn có hai nghiệm
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)
\(\Leftrightarrow\sqrt{\left(\dfrac{1-2m}{2}\right)^2-4\cdot\dfrac{m-1}{2}}=3\)
\(\Leftrightarrow\dfrac{1}{4}\left(4m^2-4m+1\right)-2\left(m-1\right)-3=0\)
\(\Leftrightarrow m^2-m+\dfrac{1}{4}-2m+2-3=0\)
\(\Leftrightarrow m^2-3m-\dfrac{3}{4}=0\)
\(\Leftrightarrow4m^2-12m-3=0\)
Đến đây bạn chỉ cần giải pt bậc hai là được rồi
1. (x2-7x+6)\(\sqrt{x-5}\)=0
2. (x2+x)2 -2(x2+x)=0
3.Cho pt (m+1)x2-(2m-2)x+m-2=0
a,tim m để pt có nghiệm
b, tìm m để pt có 1 nghiệm = 3 lần nghiệm kia
c,tìm m để pt có 2 nghiệm x1,x2 thỏa mãn 4(x1+x2)=7x1x2
4. cho pt x2+mx+m+3=0
tìm m để pt có 1 nghiệm x1,x2 sao cho 2x1+3x2=5
giải nhanh giúp e với ạ em cần gấp ạ e xin cảm ơn ạ
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
\(\left(x^2+x\right)^2-2\left(x^2+x\right)=0\)
\(< =>\left(x^2+x\right)\left(x^2+x-2\right)=0\)
\(< =>\orbr{\begin{cases}x^2+x=0\left(+\right)\\x^2+x-2=0\left(++\right)\end{cases}}\)
\(\left(+\right)< =>x\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(\left(++\right)< =>\Delta=1+8=9>0\)
\(< =>\orbr{\begin{cases}x=\frac{-1-\sqrt{9}}{2}=\frac{-1-3}{2}=-\frac{4}{2}=-2\\x=\frac{-1+\sqrt{9}}{2}=\frac{-1+3}{2}=\frac{2}{2}=1\end{cases}}\)
Vậy tập nghiệm của phương trình trên là \(\left\{-2;-1;0;1\right\}\)
Ai chưa ngủ hộ tui mấy bài này nhé, 1 thui cx đc :>>
1) Cho a,b thỏa mãn a+b>=2 . CM pt (x^2 + 2a^2b+b^5)(x^2+2ab^2+a^5)=0 luôn có nghiệm
2)Tìm m để pt 2x^2-4mx+2m^2-1=0 (với ẩn x,tham số m) có 2 nghiệm phân biệt x1,x2 thỏa mãn 2x1^2 + 4mx2+ 2m^2<2017
3) Cho a,b khác 0 thỏa mãn 1/a+1/b=1/2 chứng minh pt (x^2+ax+b)(x^2+bx+a)=0 luôn có nghiệm
Đề bài 1 có nhầm chỗ nào không bạn ???
Bài 3 :
( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)
\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)
\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)
Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)
<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b )
B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn
Vâng cj ,mai em làm 2 bài còn lại được ko ạ ???
a, cho pt X2-2x+4/x-2=ms+2-2m tìm m để pt có 2 nghiệm pb
b,cho pt mx2+x+m/x-1=0 tìm m để pt có 2 nghiệm dương pb
1) Tìm m để pt : -2x2 - 3x - m + 1 = 0 có 2 nghiệm âm phân biệt.
2) Tìm m để pt : -3x2 - 4x -2m + 1 = 0 có 2 nghiệm âm.
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)
\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)