Cho parabol (P) có phương trình là y^2 = 16x tiêu điểm của parabol là
Cho parabol có phương trình \({y^2} = 8x\). Tìm tiêu điểm và đường chuẩn của parabol.
Ta có: \(2p = 8 \Rightarrow p = 4\) nên (P) có tiêu điểm là \(F\left( {2;0} \right)\) và đường chuẩn là \(x = - 2\).
lập phương trình chính tắc của parabol (P) có tiêu điểm là F (5;0)
F(5;0) --> p/2 = 5 --> p = 10 --> (P): y^2 = 20x.
lập phương trình chính tắc của parabol (P) có tiêu điểm là F(5;0)
Ta có: F(5;0) nên \(\dfrac{p}{2}\)=5 ➝p=10
Vậy phương trình chính tắc của parabol (P): \(y^2\)= 2.10.x hay (P):\(y^2\)=20x
lập phương trình chính tắc của parabol (P) có tiêu điểm là F (5;0)
Phương trình chính tắc của parabol biết tiêu điểm F(2;0) là:
A. y 2 = 2x
B. y 2 = 4x
C. y 2 = 8x
D. y 2 = x/6
Đáp án: C
Vì parabol có tiêu điểm F(2;0) nên p/2 = 2 ⇒ p = 4
Vậy phương trình parabol là: (P): y 2 = 8x
Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.
Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)
Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)
Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)
Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)
Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng nào ( elip, hypebol, parabol) và tìm tọa độ tiêu điểm của đường conic đó.
a) \({y^2} = 18x\)
b) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\)
c) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\)
a) Đây là một parabol. Tiêu điểm của parabol có tọa độ là: \(F\left({\frac{9}{2};0} \right)\).
b) Đây là một elip. Tiêu điểm của elip có tọa độ là: \(\left\{ \begin{array}{l}{F_1}\left( { - \sqrt {{a^2} - {b^2}} ;0} \right) = \left( { - \sqrt {39} ;0} \right)\\{F_2}\left( {\sqrt {{a^2} - {b^2}} ;0} \right) = \left( {\sqrt {39} ;0} \right)\end{array} \right.\)
c) Đây là một hyperbol. Tiêu điểm của hypebol có tọa độ là: \(\left\{ \begin{array}{l}{F_1}\left( { - \sqrt {{a^2} + {b^2}} ;0} \right) = \left( { - 5;0} \right)\\{F_2}\left( {\sqrt {{a^2} + {b^2}} ;0} \right) = \left( {5;0} \right)\end{array} \right.\)
Tìm tọa độ tiêu điểm, phương trình đường chuẩn của các parabol sau:
a) \({y^2} = 12x\)
b) \({y^2} = x\)
a) Từ phương trình chính tắc \({y^2} = 12x\) ta có \(p = 6\)
Suy ra
+) Tiêu điểm của parabol \(F(3;0)\)
+) Phương trình đường chuẩn của parabol \(\Delta :x + 3 = 0\)
b) Từ phương trình chính tắc \({y^2} = x\) ta có \(p = \frac{1}{2}\)
Suy ra
+) Tiêu điểm của parabol \(F(\frac{1}{4};0)\)
+) Phương trình đường chuẩn của parabol \(\Delta :x + \frac{1}{4} = 0\)
trong mặt phẳng tọa độ Oxy. Cho parabol (P) có phương trình y=x2 và đường thẳng (d) có phương trình y=5x -m + 2 ( m là tham số )
1) Điểm A=(2;4) có thuộc đô thị hàm số (P) không. Tại sao
2) Tìm m để dường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tung độ y1,y2 tỏa mãn y1 + y2 + y1 x y2
1: f(2)=2^2=4
=>A thuộc (P)
2: bạn bổ sung lại đề đi bạn