tìm n thuộc N biết (1-2/2.3).(1-2/3.4).....(1-2/n.(n-1))=2021/6062
Cho:n>=2, n thuộc N. CM: 1/2.3^2 + 1/3.4^2 +........+ 1/n(n+1)^2 < 1/4
1. a) Tính tổng :
D = 1.2 + 2.3+ 3.4 +...+ 99.100
b) Chứng minh:
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
= n (n + 1) . (n + 2) : 3 ( với n thuộc N*)
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
TÌM x THUỘC N:2/2.3+2/3.4+2/4.5+....+2/x.(x+1)=1999/2001
Đặt \(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2.}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow\frac{S}{2}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\frac{1}{x+1}=\frac{1}{2001}\)
\(\Rightarrow\)x+1=2001
x=2000
Vậy x=2000.
S=1.2+2.3+3.4+...+n.(n+1) với n thuộc N*
CMR 3S+n.(n+1).(n2-2) là số chính phương
S=1.2+2.3+3.4+...+n.(n+1) với n thuộc N*
CMR 3S+n.(n+1).(n2-2) là số chính phương
CMR với mọi n>=2, n thuộc N ta có: \(\frac{1}{2.3^2}+\frac{1}{3.4^2}+...+\frac{1}{n\left(n+1\right)^2}< \frac{1}{4}\)
Cách lớp 7 nà:)
\(\frac{1}{n.\left(n+1\right)^2}=\frac{1}{n.\left(n+1\right).\left(n+1\right)}< \frac{1}{n.n\left(n+1\right)}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\) (n>=2_
\(\text{Suy ra }VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Mặt khác ta có công thức \(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]}{2}\) (n>= 2)
Suy ra \(VT< \frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\left(\text{do }\frac{1}{n\left(n+1\right)}>0\right)\)
Vậy ta có đpcm
Gắt chưa??? :>> Dương Bá Gia Bảo
S= 1.2+2.3+3.4+...+n.(n+1) với n thuộc N*
CMR: 3S +n(n+1). (n2 - 2) là số chính phương?
Chứng minh : \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{\left(n-1\right).n-1}{n!}< 2\)< 2 (với n thuộc N,n>=2)
Ta có :
\(A=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{\left(n-1\right)n-1}{n!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4}!+\frac{1}{3!}-\frac{1}{5!}+\frac{1}{4!}-...+\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)
\(=2-\frac{1}{n!}< 2\)
Vậy ...
Cho S =1.2+2.3+3.4+...+n(n+1) (n thuộc N sao)
hỏi 3S +n(n+1)(n^2-2) có là số chính phương hay ko?
3S = 1.2.3+2.3.3+3.4.3+.....+n.(n+1).3
= 1.2.3+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-(n-1).n.(n+1)
= n.(n+1).(n+2)
=> 3S +n.(n+1).(n^2-2) = n.(n+1).(n+2)+n.(n+1).(n^2-2)
= n.(n+1).(n+2+n^2-2) = n.(n+1).(n^2+n)
= n.(n+1)+n.(n+1) = n^2.(n+1)^2 = [(n.(n+1)]^2 là 1 số chính phương
k mk nha