Tìm x,y biết
2xy+x+y-1=0 với (x,y\(\in\)Z)
Cho biểu thức :
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\) với \(\left(x,y,z\right)\in D=\left\{\left(x,y,z\right):x>0;y>0;z>0;x+y+x=1\right\}\)
Tìm giá trị lớn nhất của P
Ta có :
\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\) (1)
Theo bất đẳng thức Cô-si ta có :
\(\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge9\)
Vì \(x+y+z=1\) nên có
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{4}\)
Thế vào (1) ta có :
\(P\le\frac{3}{4}\) với mọi \(\left(x,y,z\right)\in D\)
Mặt khác lấy \(x=y=z=\frac{1}{3}\), khi đó \(\left(x,y,z\right)\in D\) ta có \(P=\frac{3}{4}\) vậy max \(P=\frac{3}{4}\)
x+y-1/z=y+z-1=z+x+2/y với x,y,z=0. Tìm x,y,z
help
Cho \(\left\{{}\begin{matrix}x +my=2\\mx-2y=1\end{matrix}\right.\)a) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho x lớn hơn 0 và y lớn hơn 0 b) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho (x; y) nguyên
a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m>\dfrac{1}{2}>0\)
Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
1,Tìm GTLN: 1, A=|x^2-x+1|-|x^2-x-2|
2,Tìm GTLN: B=|x-y|+|x-z|+|y-z| với 0<x,y,z<3
\(Taco:\)
\(|x^2-x+1|-|x^2-x-2|=|x^2-x+1|+\left(-|x^2-x-2|\right)\)
\(\ge|x^2-x+1-x^2+x+2|=3\)
Dấu "=" xảy ra khi: \(\left(x^2-x+1\right)\left(x^2-x-2\right)\ge0\Leftrightarrow........\)
GIẢI GIÚP MỀNH VỚI
Tìm x,y,z:
a)|1-x|+|y-2/3|+|x+z|=0
b)|1/4-x|+|x+y+z|+|2/3+y|=0
c)|15/32-x|+4/25-y|+|z-14/31|=0
1.Cho |x|< hoặc = 3;|y|< hoặc bằng 5 với \(x,y\in Z\).Biết x-y=2.Tìm x và y
2.Tìm cặp số nguyên x,y thỏa mãn
a)|2x-6|+|y-5|=0
b)|x|+|y|=3
c)|x+1|+|y-2|=2
1.
vì \(x-y=2\)
\(\Rightarrow y=x-2\)
\(\Rightarrow x>y\)
vì \(\left|y\right|\le5\)
\(\Rightarrow-5\le y\le5\)
Ta có: \(\left|x\right|\le3\)
⇒ xmin=−3 và xmax=3
⇒ ymin=−5 và ymax=1
\(\Rightarrow-5\le y\le1\text{( đúng)}\)
\(\Rightarrow\text{Với }-3\le x\le3\)thì \(y=x-2\)
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
Tìm giá trị lớn nhất A= xyz(x+y).(y+z).(z+x) với x;y;z;lớn hơn hoặc bằng 0 ;x+y+z=1