Tính B = \(\frac{3}{1.4}\)+ \(\frac{3}{4.7}\)+\(\frac{3}{7.10}\)+.....+\(\frac{3}{27.30}\)
tính tổng
a)\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)
b)\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
c)\(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{7.10}+...+\frac{2}{93.95}\)
a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)
=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))
= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))
=9(1-\(\frac{1}{100}\))
A=\(\frac{891}{100}\)
b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))
=1-\(\frac{1}{30}\)
B=\(\frac{29}{30}\)
a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)
\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9.\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)
\(=1-\dfrac{1}{30}\)
\(=\dfrac{29}{30}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{27.30}\)
Đặt : \(A=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{27\cdot30}\)
\(A=\frac{1}{3}\left(\frac{5}{1}-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+...+\frac{5}{27}-\frac{5}{30}\right)\)
\(A=\frac{1}{3}\left(5-\frac{5}{30}\right)\)
\(A=\frac{1}{3}\cdot\frac{29}{6}\)
\(A=\frac{29}{18}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+....+\frac{5}{27.30}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{30-27}{27.30}\)
\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\cdot\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}\cdot\frac{29}{30}=\frac{29}{18}\)
Tính C=1.4+2.5+3.6+4.7+...+1006.1009
Tính S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...\)
biết tổng S có 100 số hạng.
Tính nhanh:
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}\)
Trả lời
3/1.4+3/4.7+3/7.10
=3/1.3/10
=3/10
Chúc bạn học tốt #
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}\)
\(=\frac{9}{10}\)
tính nhanh
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
S = 3 - \(\frac{3}{100}\)= \(\frac{300}{100}-\frac{3}{100}=\frac{297}{100}\)
S=3/1.4+3/4.7+3/7.10+.....+3/97.100
S=1/1-1/4+1/4-1/7+1/7-1/10+.....+1/97-1/100
S=1-1/100
S=99/100
Tính tổng sau:
a) S= 1 + \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{24.27}+\frac{3}{27.30}\)
b) S= -4 + \(\frac{3}{1.4}+\frac{3}{4,7}+\frac{3}{7.10}+...+\frac{3}{103.107}+\frac{3}{107.110}\)
a/ Ta có: \(S=1+\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{27}-\frac{1}{30}\right)\)
\(S=1+\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(S=1+\frac{7}{15}\)
\(S=\frac{22}{15}\)
b/ \(S=-4+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{107}-\frac{1}{110}\right)\)
\(S=-4+\left(1-\frac{1}{110}\right)\)
\(S=-4+\frac{109}{110}\)
\(S=-3\frac{1}{110}\)
B = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
. là nhân
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+..+\frac{3}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-....+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
bài 1:tính
a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{27.30}\)
b)\(\frac{12}{3.5}+\frac{12}{5.7}+\frac{12}{7.9}+...+\frac{12}{97.90}\)
nhanh lên nha gấp lắm rồi ai làm đúng và nhanh nhất tui tick cho
a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)
\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)
Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)
\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)
\(2A=\frac{12}{3}-\frac{12}{99}\)
\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)
1.5/1-5/4+5/4-5/7+5/7-5/9 +....+5/27-5/30
=5/1-5/30
=145/30=29/6.
Tính :
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+.....+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Ta thấy :
\(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
\(.........\)
\(\frac{3}{97.100}=\frac{100-97}{97.100}=\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3\cdot\frac{99}{100}=\frac{297}{100}\)
đáp án = \(\frac{297}{100}\)
đúng không?
kết bạn với mh nha