\(\frac{51.52.53...100}{1.3.5...99}\)
rút gọn biểu thức
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
rút gon phân số 1.3.5...99/51.52.53...100
Giải giúp mik bài toan bày nhé:
Rút gọn phân số:
a)\(\frac{10.11+50.55+70.77}{11.12+55.60+77.84}\)
b)\(\frac{1.3.5...99}{51.52.53...100}\)
\(\frac{1.3.5.....97.99}{51.52.53....99.100}\)Rút gọn phân số
Xét tử : \(1.3.5.....99\)
\(=\frac{1.2.3.4.....98.99.100}{2.4.6.....100}\)
\(=\frac{\left(1.2.3.....50\right)\left(51.52.....99.100\right)}{\left(1.2\right).\left(2.2\right).....\left(50.2\right)}\)
\(=\frac{\left(1.2.3.....50.\right).\left(51.52.....100\right)}{\left(1.2.3.....50\right).2.2.....2}\)
\(=\frac{51.52.....100}{2.2....2}\)
\(=\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}\)
Ta được phân số\(\frac{\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}}{51.52.....100}\)
\(=\frac{\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}}{\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}.2.2.....2}\)
\(=\frac{1}{2.2.....2}\)
\(=\frac{1}{2^{50}}\)
Chứng minh rằng: \(\frac{51.52.53...100}{2^{50}}=1.3.5...99\).
Ta có \(1.3.5...99=\frac{1.2.3.4.5...100}{2.4.6...100}=\frac{1.2.3.4.5....100}{2^{50}.1.2.3.4...50}=\frac{51.52.53...100}{2^{50}}\left(\text{đpcm}\right)\)
Ta có : \(1.3.5....99=\frac{1.2.3.4.5....100}{2.4.6...100}=\frac{1.2.3.4.5....1000}{2^{50}.1.2.3.4....50}=\frac{51.51.53....100}{2^{50}}\)( đpcm )
1.Rút gọn biểu thức:
a)A=\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
b)B=\(\frac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^{26}+x^{24}+x^{22}+...+x^2+1}\)
c)C=\(\frac{51.52.53...100}{1.3.5...99}\)
2.Cho\(\frac{x}{a}\)=\(\frac{y}{b}\)=\(\frac{z}{c}\). Rút gọn A=\(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\)
3.Cho A=\(\frac{xy^2+y^2.\left(y^2-x\right)+1}{x^2y+2y^4+x^2+2}\)
a)Rút gọn A
b)tìm các giá trị của biến để A đạt giá trị lớn nhất
rút gọn phân số
\(\frac{1.3.5...97.99}{51.52.53...99.100}\)
tính A:B
A=\(\frac{100^2+1^2}{100.1}\)+\(\frac{99^2+2^2}{99.2}\)+\(\frac{98^2+3^2}{98.3}\)+...+\(\frac{51^2+50^2}{51.50}\)
B=\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+...+\(\frac{1}{100}\)
rut gon phan so
1.3.5...........99 / 51.52.53........100
ai giai đc mk duyet cho
Rút gọn biểu thức sau :
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ta xét biểu thức sau :
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left[\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right]}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(với n > 0)
Áp dụng : \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+...+\left(\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right)\)
\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Rút gọn biểu thức sau:
\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+...+\frac{2014}{\sqrt{99}+\sqrt{100}}\)
\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+...+\frac{2014}{\sqrt{99}+\sqrt{100}}\)
\(=2014.\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\right)\)
\(=2014.\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=2014.\left(\sqrt{100}-\sqrt{1}\right)=2014.9=18126\)
\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+.....+\frac{2014}{\sqrt{9}+\sqrt{100}}\)
\(=\sqrt{1}-\sqrt{2}+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{999}\)
\(=\sqrt{100}-1\)
\(=9\)
P/s: Không chắc à
\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+....+\frac{2014}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{1}-\sqrt{2}+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1\)
\(=9\)
\(=9.2014=18126\)